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Preface

The key challenge for future computer system is dealing with complexity. On one
hand this involves internal system complexity which has increased exponentially
over recent years. Here the main objectives are to maintain system reliability
and to keep the design and maintenance effort manageable, while at the same
time continuing to provide new functionality and increasing system performance.
This has been the focus of so-called autonomous computing, which aims to bring
self-configuration and repair to a wide range of computing systems.

On the other hand future computer systems are more and more becoming
integrated into the fabric of everyday life and thus have to deal with the com-
plexities of the real world. They will become smaller, more appropriate for their
use, integrated into everyday objects, and often virtually or physically invisible
to the users. They will also be deployed in a much higher quantity and penetrate
many more application areas than traditional notions of computer systems. This
requires computer systems to be adaptable within a much wider range of possible
tasks, subjected to much harsher conditions.

To provide such features and functionality, computer devices will become
tinier yet still increase in system complexity; they must consume less power, while
still supporting advanced computation and communications, such that they are
highly connected yet still operate as autonomous units. Pervasive and ubiquitous
computing research addresses such issues by developing concepts and technology
for interweaving computers into our everyday life. The principal approach is
to enhance system functionality and adaptability by recognizing context and
situations in the environment.

Organic computing deals with high system complexity by drawing analo-
gies from complex biological systems, with the human-centered goal of self-
organization. It addresses both internal system complexity of conventional sys-
tems and the complexity involved in pervasive environments dealing with the real
world. Thus organic computing investigates the design and implementation of
self-managing systems that are self-configuring, self-optimizing, self-healing, self-
protecting, context aware, and anticipatory. It touches upon a number of exciting
research topics including ultra-low power consumption, scalability and complex-
ity of devices and systems, self-awareness, adaptive networking, and smart be-
havior of systems.

Many papers submitted to the Architecture of Computing Systems Confer-
ence (ARCS) address these aspects of adaptable, self-organizing systems. For
computer system hardware, reconfigurable hardware allows us to optimize the
system performance based on the application context, relieving software develop-
ers from detailed consideration of the inherently inflexible hardware constraints.
Adaptive methods for managing resources and tasks enable (embedded) micro-
processor systems to be both real-time aware but also very low in their power
consumption. In software, middleware agents are able to cope with changes in
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application and environment, thus still providing a minimum of functionality
even under difficult and changing conditions.

Adaptive ad hoc communication networks and context-aware pervasive sys-
tems and applications provide the functionality mostly visible to the end user
of such systems. To achieve this extent of adaptivity a large variety of meth-
ods were used – many of them borrowed from nature. The papers in this book
present a good profile of such novel methods and their application in the area of
computing systems.

This year the ARCS conference selected 18 papers from a competitive field
of 52 submissions from 12 countries. All papers accepted for presentation were
peer reviewed and discussed in the first step in an online discussion among
members of the international Program Committee. In the PC Meeting then the
final decisions were made based on these reviews and the online discussions. Care
was taken to avoid any conflict of interest by handing out papers and discussion
papers only to PC members not involved in or related to the work.

We would like to take the opportunity to thank the numerous people who
supported us in organizing the paper program and the conference: the Pro-
gram Committee members for their efforts in reviewing many papers; Uwe
Brinkschulte for supporting us by serving as the Workshops and Tutorials Chair;
and the General and Program Chairs, Christian Müller-Schloer and Theo Un-
gerer, for sharing their experience with us and helping us to organize the paper
program and the conference.

We extend our gratitude to several organizations that provided financial and
organizational support for the ARCS conference. Volker Schanz from the ITG
provided the legal framework and the ARCS Fachausschuss, the organizational
body of the conference. Financial and organizational support came from the
APS+PC group, which organized and funded a special session with several in-
teresting invited talks. Donations also came from our benefactor, Siemens AG.
We would also like to thank Christian Decker and Michael Biebl for their help
during the electronic submission process, and the University for Health Sciences,
Medical Information and Technology in Innsbruck, Austria for hosting the con-
ference.

January 2005 Michael Beigl
Program Chair ARCS 2005

Paul Lukowicz
General Chair ARCS 2005
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Energy Management
for Embedded Multithreaded Processors

with Integrated EDF Scheduling

Sascha Uhrig and Theo Ungerer

Institute of Computer Science, University of Augsburg,
86159 Augsburg, Germany

Tel.: +498215982353, Fax.: +498215982359
{uhrig,ungerer}@informatik.uni-augsburg.de

Abstract. This paper proposes a new hardware-based energy manage-
ment technique for future embedded multithreaded processors with in-
tegrated Earliest Deadline First (EDF) real-time scheduling. Our energy
management technique controls frequency reduction and dynamic volt-
age scaling depending on the deadlines, the Worst Case Execution Times
(WCET), and the real execution times. Hard real-time capability can be
guaranteed for aperiodic threads and for threads with deadlines shorter
than their period. Our evaluations show that energy consumption can
be reduced up to about 2

3
of a comparable software-based algorithm.

Keywords: energy management, energy-aware program execution, real-
time scheduling, multithreading, EDF scheduling

1 Introduction

The reduction of energy consumption is an important research field because of
the rapidly growing number of battery-powered mobile and embedded devices.
Hard real-time is often an essential requirement for such systems. This paper
focuses on energy management in embedded processor cores in combination with
real-time applications. The aim is to reduce the total energy consumption by
optimizing power consumption without delaying the completion of the real-time
threads.

In CMOS devices, the power consumption is proportional to the square of
the supply voltage and linear to the frequency:

Pcmos = aCLV 2
DDf,

where a is the activity of the circuit, CL is the output load capacity, VDD the sup-
ply voltage, and f the frequency. Obviously, power consumption can be reduced
dynamically by decrementing supply voltage and clock frequency. Unfortunately,
supply voltage depends on clock frequency and, using lower frequency, the pro-
cessor’s performance is reduced too. Hence, in real-time systems, we have to
control frequency in a way which does not harm the real-time behavior of the
system.

M. Beigl and P. Lukowicz (Eds.): ARCS 2005, LNCS 3432, pp. 1–17, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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We developed a multithreaded Java microcontroller – called Komodo mi-
crocontroller – with hardware-integrated real-time scheduling schemes [1, 2] for
application in embedded real-time systems and ubiquitous devices. The Komodo
microcontroller is able to perform a thread switch without any overhead. Thus,
instructions of active threads are executed in an overlapped fashion inside the
core pipeline; the EDF scheduler hardware ensures that the thread with the
earliest deadline is the thread with the highest priority. Due to hardware multi-
threading, instructions of other threads are executed within latency cycles of the
thread with the highest priority without interfering with its execution (latency
bridging).

We investigate mechanisms to minimize energy consumption using hardware-
based energy management techniques that are made possible by a multithreaded
processor core with integrated EDF scheduling. In particular, we show that en-
ergy saving techniques like frequency reduction and voltage scaling can be con-
trolled more efficient by the integrated EDF energy management than using
conventional operating system methods. Our hardware-integrated energy man-
agement algorithm chooses automatically in each processor cycle the frequency
and voltage level that is currently required to perform a real-time application
without any miss of deadline.

The next two sections show state-of-the-art energy saving mechanisms and
related work. Section 4 presents the extensions for hardware-based energy man-
agement within the processor-integrated EDF scheduler and in section 5 we
evaluate our approach. Section 6 concludes the paper.

2 State-of-the-Art Energy Saving Mechanisms

Commercial processors use a number of techniques for saving energy like pipeline
gating, several suspend or sleep modes, and reduction of frequency and supply
voltage. Intel’s XScale [3], Transmeta’s Crusoe [4] and the MSP430 [5] from Texas
Instruments work with software-controlled techniques of frequency reduction and
voltage scaling.

We describe shortly the energy saving features of the XScale and the Crusoe
processors, because we use their electrical properties (voltages and frequency
rates) for simulating our hardware-based energy management. Both processors
are able to run at several frequencies using different supply voltages. A change
of frequency requires among other tasks to complete all outstanding memory
accesses, to set the external SDRAM to self-refresh mode, and to disable the
interrupt controller. Most tasks are done automatically, but, nevertheless, they
need time for execution. The whole process of changing frequency requires up to
500μs in the case of the XScale. Using the Crusoe processor, the time required
for a supply voltage change depends on the distance of the two voltage levels.
The maximum value is about 896μs in the default configuration.

Pipeline Gating [6] is a technique for selectively disconnecting parts of the
processor, especially pipeline stages. So the energy consumption can be reduced
by uncoupling unnecessary parts of the pipeline without concerning any other
component. In contrast, frequency and voltage scaling affect the whole circuit.
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3 Related Work on Real-Time Energy Management

Different directions of research targeting real-time applications are present: en-
ergy management controlled by the application, the operating system, or by the
hardware itself. Application-based power management requires special power
control sequences within the application’s program code. Shin et al. [7] present
a technique for automatic insertion of power controlling code based on a WCET
analysis before runtime. The suggested mechanism is feasible for hard real-time
systems.

In contrast to application-based techniques, other approaches focus on fre-
quency and voltage reduction controlled by the operating system, especially
by its thread scheduler. Pillai et al. [8] present several energy-aware scheduling
schemes similar to the EDF scheduling scheme for low-power embedded real-time
operating systems. Jejurikar et al. [9] focus on the problem of task synchroniza-
tion in combination with energy-aware task scheduling. Pouwelse et al. [10, 11]
describe a hybrid approach, which is based on an extended Linux OS with a
so-called energy priority scheduling. The parameters for the scheduler are given
by the application.

A theoretical approach for an energy saving technique using EDF scheduling
is presented by Krishna et al. [12, 13]. Their energy management is based on an
offline thread schedule, the online schedule, an offline and an online function,
which describe the amount of work to do. Aydin et al. [14] additionally use a
speculative speed adjustment for periodic real-time tasks.

All presented techniques are based on a single-threaded processor core and
a software-based energy management. Energy management investigations con-
cerning multithreaded processors pertain simultaneous multithreading and are
made by [15, 16]. Energy management of a multithreaded single-issue processor
with integrated Guaranteed Percentage (GP) hardware real-time scheduling was
evaluated by ourselves [17, 18].

All existing processors and research approaches (except our GP energy man-
agement) suffer from the inefficiency of software control: Calculating the optimal
frequency and the supply voltage by software requires a software overhead. Ad-
ditionally, most control techniques assume a continuous frequency control which
is not realistic. In real processors, frequency is selected by binary clock multipli-
ers and dividers, i.e. only discrete frequency levels are possible. A more efficient
solution is a hardware-based energy management, i.e. the processor core decides
to run at the optimal frequency and voltage level by itself and is able to readjust
frequency and voltage during thread execution.

Another drawback of existing energy management techniques in combination
with real-time scheduling is the often used assumption, that the deadline of each
thread has to be equal to its period. Krishna et al. and Aydin et al. addition-
ally require an offline thread “execution” for determining the amount of work
function and the offline schedule itself for the energy management.
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4 Hardware-Based Energy Management Mechanism

4.1 Thread Model

For our energy management technique we permit arbitrary activation of threads
with the constraints that all threads are independent and that a thread will
only be restarted after its completion, i.e. at most one instance of each thread is
active at a time. In the case of periodic threads, we do not make the assumption
that their deadlines are equal to their periods.

For the realization of our proposed energy management technique, several
characteristics of the execution of a thread are necessary. Fig. 1 illustrates the
required values which are measured in execution cycles. The figure is divided
into two scheduling areas: the upper area describes the regular thread schedul-
ing which is similar to Krishna’s offline scheduling, with the difference that it
is generated online by the knowledge of the WCETs and the deadlines of the
already completed and all actually active threads. The lower area mirrors the
scheduling depending on the real runtime behavior of the threads, i.e. the run-
time scheduling. In addition to these two schedulers a third scheduler, not shown
in the figure, called execution scheduler is present. It is responsible for the se-
lection of the thread executed within the multithreaded processor pipeline in
the current clock cycle. Because of the latency bridging, the scheduling decision
temporarily alternates between different threads.

time

RET

WCET

surplus

runtime(t )0 remaining runtime(t )0

thread

execution

surplus by

early

thread

completion

deadline

regular start

of execution

regular thread

completion

early

thread

execution

thread

activation

execution of other threads

with earlier deadlines

regular scheduling

runtime scheduling

time of view t0

tcompletiont0tstart

surplus by

early

thread

execution

Fig. 1. Characteristics during the execution of a thread.

The deadline and the WCET are given by the application and stored as con-
stants within the energy management unit. The surplus are the remaining cycles
from thread completion to the regular (planned) completion of the thread assum-
ing that all previous threads have exhausted their WCET too. The runtime(t0)
represents the amount of execution cycles the current thread has executed up to
time t0. In general, due to the multithreaded execution and the surplus of the pre-
vious thread, an early thread execution takes place and thus, the runtime(tstart)
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is greater than zero at the regular start of execution. At thread completion, the
runtime(tcompletion) is equal to the real execution time (RET). The remaining
runtime(t0) is the number of cycles the thread will run from time t0 (assuming
its WCET), i.e., the difference between the WCET and the runtime(t0). The
surplus is the sum of the surplus by early thread completion and the surplus by
early thread execution (surplus of the previous thread).

4.2 Methodology

The idea behind the hardware-based energy management mechanism is that the
active threads rarely need the time calculated as WCET for the actual execution
as it is reported in [19]. Thus frequency can be reduced such that all threads ter-
minate as late as possible but not later than the time predicted by the schedula-
bility analysis (depending on the WCETs). As a consequence, the supply voltage
can be adapted to a level corresponding to the throttled frequency, which may
lead to a tremendous energy saving. Because of the direct relationship between
the selected clock frequency and the required supply voltage, determining the
optimal clock frequency is the real challenge.

Using a software-based solution, frequency and voltage selection is only possi-
ble at the time of a thread suspend or activation (intertask DVS) or at dedicated
points during thread execution (intratask DVS). In contrast to a software-based
version, our hardware-based energy management is able to observe the progres-
sion (in execution cycles) of all active threads continuously. Thus, clock frequency
and supply voltage can be adapted dynamically during the thread’s execution
to approximate the optimal execution speed.

At the time of a thread suspend the presented energy saving mechanism
registers the number of execution cycles remaining to the regular thread suspend,
i.e. the surplus. Due to the surplus of the just suspended thread the execution of
the thread directly following can be slowed down. The optimal frequency freduced

can be calculated by the formula

freduced =
W CET

surplus + W CET
∗ fmax,

where fmax is the maximum frequency of the processor, W CET is the WCET
of the new thread, and surplus is the surplus of the just suspended thread. If
the processor is working at the calculated optimal frequency freduced and the
new thread requires its complete WCET, its execution completes exactly at the
time planned by the schedulability analysis. If the new thread does not need its
WCET for execution it offers a surplus to the following thread. Usually only fixed
frequency levels are provided by the processor. So the optimal frequency cannot
be selected and a frequency higher than the optimal one has to be chosen. As
result, the really required energy is higher than the theoretical necessary energy.

4.3 Implementation

To realize the EDF energy management the following set of five hardware regis-
ters are required for each hardware thread slot:
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W CETreload : This register is addressable by the software. It contains the reload
value of the WCET.

W CETsurplus : The W CETsurplus register is an internal register within the
energy management unit. At every thread activation it will be automatically
reloaded with the value stored in the W CETreload register. During runtime
it will be decreased according to the algorithm described below.

W CETremain : This register is very similar to the W CETsurplus register. The
difference between these two registers is the way of decrease also described
below.

DLreload : The DLreload register holds the deadline of the corresponding thread.
It is software addressable.

DLcount : At the time of a thread activation, this register will be initialized
with the value of the DLreload register. It is decremented in every clock
cycle and is responsible for the thread scheduling. Both deadline registers
are required for the thread scheduling and are already available within the
priority manager.

Depending on the thread scheduling, selective registers are updated in ev-
ery execution cycle by hardware. Both reload registers have to be set by the
application with the help of special instructions.

Register Actualization: The W CETsurplus and the W CETremain registers
have to be updated corresponding to the actual thread execution. That means,
the W CETremain register of a thread is decremented iff an instruction of this
thread is executed in the actual execution cycle, i.e. it reflects the execution cy-
cles remaining until the maximum thread execution cycles. Whereas the
W CETsurplus register has to be reduced iff the corresponding thread is cur-
rently the regular thread, i.e. assuming the WCET of all previously executed
threads. At the time of thread suspend, the W CETsurplus register mirrors the
surplus which is available for the execution of other threads.

The scheduling decision of the regular scheduler depends only on the dead-
lines and the WCETs of all active threads. The execution scheduling evaluates
additionally the fill level of the instruction windows, possible latencies, and the
real completion of the threads.

Fig. 2 demonstrates the correlation of the scheduling parameters, the schedul-
ing decisions, and the decrease of the WCET registers. The scheduling parame-
ters deadline, latencies, IW (instruction window) fill level, and the active flags are
required for the execution scheduling. The WCET register sets are only required
for the energy management. The W CETsurplus and the W CETremain registers
are updated depending on the regular respectively the execution scheduling. A
set of all registers is available for each hardware thread slot.

Frequency and Voltage Control: For frequency and voltage control an addi-
tional third scheduler, the runtime scheduler is required, which is not shown in
figure 2. Its task is to determine the thread with the highest priority in execution.
In contrast to the execution scheduler, the runtime scheduler ignores the fill levels
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regular

scheduling

execution

scheduling

deadline latencies IW fill level

WCETsurplus WCETremain

-a -1

selected

thread for

execution

active

scheduling parameters

scheduling

decisions

WCET register sets

Fig. 2. Decrease of the WCET registers in correlation with the scheduling. The decrease
value a depends on the selected execution frequency.

of the instruction windows and occurring latencies. Thus, the runtime scheduler
designates the current active thread with the highest priority disregarding its
feasibility.

For the selection of the execution frequency, the energy management unit
has to distinguish between three cases:

1. The decision of the runtime scheduler is invalid. In this case, no active thread
is available. Frequency and supply voltage can be reduced to the minimum
level.

2. The decisions of the runtime scheduler and the regular scheduler are iden-
tical. The maximum number of cycles the thread will be executed is known
within the register W CETremain and the number of cycles available till the
regular completion of the thread is stored in register W CETsurplus. The
execution frequency can be reduced or has to be increased to

freduced =
W CETremain

W CETsurplus
× fmax.

3. As last case, the regular thread is not the same as the thread determined by
the runtime scheduler. This means, a previous thread completes before its
WCET and its surplus is available for the execution of the thread selected
by the runtime scheduler. The execution frequency has to be set to:

freduced =
W CETremain runtime

W CETsurplus regular + W CETsurplus runtime
× fmax,

where W CETremain runtime and W CETremain runtime are the correspond-
ing registers of the thread determined by the runtime scheduler and
W CETsurplus regular is the W CETsurplus register of the regular thread.
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We assume that the clock generator works with a clock divider without any
settling time. In our simulations we used the following divisors: 1, 1.5, 2, 2.5, 3,
3.5, 4, 4.5, 5, 10, and 14. How we determine the optimal execution frequency is
now shown at the example of case 3 (see above). The following formula must be
fulfilled by the minimal possible frequency:

freduced ≥ W CETremain runtime

W CETsurplus regular + W CETsurplus runtime
× fmax.

freduced is derived from fmax by a clock divider. Divnum is the numerator and
Divdenom the denominator of the clock divider:

freduced = fmax/
Divnum

Divdenom
.

Combining both formulas leads to the following inequation:

fmax/ Divnum

Divdenom
≥ WCETremain runtime

WCETsurplus regular+WCETsurplus runtime
× fmax

⇔
Divdenom × (W CETsurplus regular + W CETsurplus runtime)

≥ Divnum × W CETremainruntime

Using the mentioned clock divider, all multiplications can be mapped to shift
operations and at maximum one addition. In parallel to the frequency selection,
supply voltage is chosen using a lookup table and the calculated frequency divider
as index. In contrast to the voltage which is set immediately, frequency is set after
a delay iff an increased voltage is required (see 4.5). In between, the processor
continues working at the lower frequency.

4.4 Readjusting Frequency

In most cases, the selection of the optimal frequency is not possible. Therefore,
the energy management technique has to choose a frequency higher than the
optimal one because otherwise the actual executed thread could terminate after
the regular termination. While the thread is executed at the higher frequency
than the optimal one, the progression is also higher than required.

At the time the thread’s progress reaches a level such that frequency can
be decreased below the optimal one, the energy management slows down the
processor to this frequency. Additionally, supply voltage could be decreased.
The dynamic readjustment of frequency and voltage at any time during thread
execution can only be afforded by a hardware-based solution which monitors the
thread’s progression consistently.

4.5 Impact on WCET

Using the policy described in section 4.4, an increase of the execution frequency
may be necessary. In this case, the supply voltage has to be adapted first (because
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of the capacity of the circuit) before the execution frequency can be increased.
We called this delay the frequency increase delay which is the only impact of
the energy management to the timing behavior of the system. The WCET of
each thread has to be increased by the frequency increase delay. The necessity
of this delay can be demonstrated by the following situation: The processor is
running at a low frequency and a low supply voltage. Now, a new thread with
the highest priority is activated. Because of the unknown runtime behavior of
the new thread, the processor has to run at the highest frequency and voltage.
Thus, first voltage has to be increased and just after voltage reached the required
level, i.e. after the frequency increased delay, frequency can be increase too.

Another case, in which the frequency increase delay is important is the simul-
taneous change of the regular thread and the thread with the highest priority.
Hence, due to the unknown runtime behavior of the second thread, the processor
has to run at highest frequency. To allow running at high frequency immediately,
supply voltage has to be set to the highest level before the first thread completes
regularly, i.e. when the W CETsurplus register of the first thread is less than the
frequency increase delay.

4.6 Drawback During Switching

Within all software energy-management techniques known to us, voltage and
frequency switching is done in one iteration. Hence, this step takes at least as
long as the voltage needs to reach the required level (assuming a voltage increase)
and no useful work can be done in the meanwhile. Our hardware-based energy-
management controls frequency and voltage in two steps without halting the
processor. It still runs at the lower frequency until the voltage reaches the upper
level. The time, the processor runs at the lower level is taken into account at
the selection of the target frequency and voltage. Therefore, a high number of
voltage and frequency changes is rather an advantage than a disadvantage.

5 Evaluation

5.1 Processor Models

As proof of our concept we built the described energy management technique
into the VHDL model of the multithreaded, single-issue Komodo processor core
with integrated EDF scheduling [2, 20]. Besides the energy management itself,
we integrated a clock divider with 11 different output frequencies. To avoid the
assumption of f ∼ U , we used the more realistic voltage levels derived from
the Crusoe respectively the XScale processor and the appropriate clock dividers
shown in table 1.

All benchmarks are performed by simulating the VHDL model. The fre-
quency divider supports the clock dividers shown in table 1. Each benchmark
is simulated twice: first using the voltage levels similar to the Crusoe technol-
ogy (Crusoe-style), second using the voltage levels corresponding to the XScale
technology (XScale-style). In addition to these two technologies we used three
different energy management techniques per benchmark:
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Table 1. Voltage levels assumed for the simulation derived from the XScale and the
Crusoe processor’s supply voltage levels.

Clock XScale’s Crusoe’s Clock XScale’s Crusoe’s
divider voltage voltage divider voltage voltage

[V] [V] [V] [V]

1 1.1 1.3 4 0.85 0.8
1.5 1.0 1.05 4.5 0.85 0.8
2 1.0 0.95 5 0.85 0.8

2.5 1.0 0.875 10 0.85 0.8
3 0.85 0.85 15 0.85 0.8

3.5 0.85 0.8

1. Assuming a single threaded microcontroller with pipeline gating requiring in
gated mode 40% of the total energy consumption.

2. Assuming a single threaded microcontroller and a software-based EDF en-
ergy management similar to that presented by Pillai et al. [8].

3. The multithreaded microcontroller with integrated energy management. We
assumed an overhead of 8% energy consumption for the additional hardware
effort. This value is derived from the additional hardware cost for energy
management.

Energy consumption is estimated by tracking the core frequency in com-
bination with the selected voltage level and the formula of section 1. Because
energy is proportional to the clock frequency we just calculate the relative energy
consumption.

5.2 Benchmarks

We performed two synthetic benchmarks and a realistic benchmark for evaluat-
ing the behavior of the hardware-based EDF energy management.

Synthetic Benchmarks: Each synthetic benchmark consists of four threads
with a growing processor utilization. The WCETs and the periods of all threads
are chosen in the way that the theoretical processor load of a whole benchmark
is 100%. During the execution of both benchmarks, the real processor utilization
is growing from nearly 0% at the beginning to finally 100% of computing power.

Within the first benchmark (EQUAL) all four threads were activated simulta-
neously with identical periods. Figure 3 illustrates the activation and the growing
real computing time of the threads. In contrast, the threads within the second
benchmark (DIFF) were activated at different times using different periods (see
table 2).

The relative energy consumptions of the three different processor models us-
ing the energy management techniques pipeline gating (PG), Pillai software en-
ergy management (Pillai) and hardware-based EDF energy management (EDF)
are compared as function of the real processor utilization using the processor
models similar to the Crusoe respectively the XScale technology. Figure 4 and 5
show the results of the EQUAL benchmark and figure 6 and 7 mirror the relative
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Fig. 3. Thread activation and execution during the EQUAL benchmark.

Table 2. Periods and WCETs of the DIFF benchmark.

Period WCET Utilization

Thread 1 100000 11655 11.6
Thread 2 20000 7900 39.5
Thread 3 55000 6160 11.2
Thread 4 25000 9425 37.7

energy consumption of the DIFF benchmark. The figures do not show the total
energy consumption of the whole benchmark but rather snap-shots of energy
consumption at the appropriate utilization level.

Three curves are shown in all four figures. The one starting slightly above
40% and reaching 73% represents the energy consumption of a processor core
supporting only pipeline gating. Because of the assumed energy consumption of
40% in gated mode the minimum energy consumption is likewise 40%. Due to
latency bridging, the maximum energy consumption is less than 100% of the
energy consumption, i.e. in the case of 100% processor utilization, there are still
unused clock cycles left for pipeline gating. This phenomenon can be observed
in all measurements.

The second curve, mostly in the middle describes the energy consumption
of the benchmarks using a software-based energy management similar to the
Pillai technique. The relative energy consumption using the EQUAL benchmark
behaves as expected. In the case of the DIFF benchmark the energy consump-
tion using the Pillai energy management exceeds the energy consumption of
pipeline gating. This behavior can be explained by the software overhead of the
energy management and the readjustment of frequency and voltage only at each
thread activation and suspend. Because of the disadvantageous distribution of
the threads in the DIFF benchmark, this phenomenon appears only here.

The lowest curve in each figure shows the relative energy consumption result-
ing from the hardware-based EDF energy management. The EQUAL benchmark
is a very uniform benchmark which leads to the approximately proportional en-
ergy consumption in figure 4. In contrast to EQUAL, DIFF is a very inhomo-
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Fig. 4. Relative energy consumption of the EQUAL benchmark (Crusoe-style).
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Fig. 5. Relative energy consumption of the EQUAL benchmark (XScale-style).

geneous benchmark, which leads to a more or less advantageous arrangement
of active threads. The low point at about 90% processor utilization using the
Crusoe-style model is a result of an advantageous thread arrangement. The flat-
tening of the energy curve at growing processor utilization can be explained
by the increasing overlapped thread execution, i.e. with the growing number of
usable latency cycles.
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Fig. 6. Relative energy consumption of the DIFF benchmark (Crusoe-style).
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Fig. 7. Relative energy consumption of the DIFF benchmark (XScale-style).

Realistic Benchmark: For the realistic benchmark, the Komodo microcon-
troller prototype was built into an autonomous guided vehicle (AGV). Four hard
real-time threads control the movements of the vehicle and are used for evalua-
tion. The microcontroller’s inputs are the data sent by a line camera, its outputs
are pulse width modulated signals (PWM) for two driving engines. The task of
the vehicle is to track a steering line on the floor. The four threads perform the
following tasks:
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1. Receiving Camera Data: This thread is responsible for receiving the digital
pixel values sent by the line camera. The data is stored in a Java array. The
camera thread is activated each time a pixel is received and deactivates itself
after writing the received data into the array. After receiving a whole picture,
the array is transmitted to the second thread.

2. Recognizing the Line: The task of this thread is to recognize the line that
guides the vehicle based on the data within the array. This thread is only active
during the line detection, otherwise it is deactivated.

3. Calculating Steering Data: Together with the data of previous line pictures
and the information about the actual positioning of the line, this thread calcu-
lates the new driving direction and speed. These two values are forwarded to the
next thread.

4. Generating PWM Signals: This thread’s job is to use the values of direction
and speed for calculating PWM signals.

Methodology: Because real current measurements cannot be made using a FPGA
prototype and an ASIC is much too expensive, the measurement methodology
combines real input data from the AGV prototype with a VHDL simulation
of the Komodo microcontroller including the different energy management tech-
niques (pipeline gating, software-based energy management, and hardware-based
energy management).

First, the vehicle’s control program was executed on the FPGA prototype
inside the vehicle. During the first 3.2 million clock cycles a logic analyzer records
the signals sent from the line camera. The second step is to use the logged data as
input to the simulation running the same vehicle program yielding the frequency
and voltage changes and the number of cycles with gated pipeline.

Results: Figures 8-9 present the results of our simulations. The x-axes mirror the
time in base clock cycles and the y-axes show the energy consumption relative to
a processor without any energy management. The peaks above 1 in figure 9 stem
from the assumed overhead of 8% of energy consumption of the base processor
because of the added energy management hardware.

Figure 10 summarizes the simulation results by showing the fractions of en-
ergy consumption during the simulated time interval. Each column represents
the required energy in the specified technology in comparison to a Komodo mi-
crocontroller running at full speed all the time. These values are calculated using
the formula in section 1, where C (the capacity of the whole circuit) and f are
normalized to 1.

The leftmost bars show the energy consumption using pipeline gating and the
highest voltage of the corresponding technology. The reason for the large energy
saving of about 51.5% is the low overall processor utilization with an average of
22.6% over the whole time interval. Because we assumed that the energy needed
in gated mode is still 40% of the energy in running mode, the required fraction
of energy (48.5%) is higher than the overall utilization.

The bars in the middle of figure 10 mirror the results using a software-based
energy management similar to the one presented by Pillai et al. within a single
threaded processor core. It reaches energy savings of up to 82%.
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Fig. 8. Energy consumption using pipeline gating and software based energy manage-
ment (Crusoe-style model).
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Fig. 9. Energy consumption using hardware based EDF energy management (Crusoe-
style model).

The remaining bars show the results using the hardware-based frequency/volt-
age adjustment and pipeline gating. This combination reaches the best results
with the least energy consumption due to the fast frequency and voltage switches,
the usage of latencies and the fact, that the processor is not idle during volt-
age/frequency switching. Because of more available voltage levels and a lower
voltage at the slow clock rates, the Crusoe-derived version outperforms the XS-
cale version.
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Fig. 10. Total energy consumption of the AGV benchmark normalized to a Komodo
microcontroller running at full speed.

6 Conclusions

This paper presents a new management technique for reducing energy consump-
tion within multithreaded real-time systems. Frequency adjustment and dynamic
voltage scaling are managed exclusively by hardware. The management tech-
nique is based on the Earliest Deadline First (EDF) scheduling scheme imple-
mented in the multithreaded Komodo microcontroller which is used for bench-
marking.

One advantage of hardware-controlled energy management over software-
based solutions is the ability of using extremely short periods of underutilization
for reducing energy consumption, where software-based solutions are not able to
react fast enough. The second advantage is the ability to slow down real-time
thread execution at any time during thread execution. Thus, our technique is
able to compensate the disadvantage of discrete frequency levels. As third ad-
vantage, it should be mentioned that our hardware-based energy management is
suitable for both, periodic and sporadic real-time threads. Especially in ubiqui-
tous systems, energy management for aperiodic real-time threads is important.

Our evaluations show that energy consumption could be reduceded to 2
3 of

an comparable software-based solution. The consumed energy never exceeds the
amount consumed by the software-based algorithm. Additionally, the software-
based algorithm supports only periodic threads.
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Abstract. The power consumption of peripheral devices is a significant
portion of the overall energy usage of a mobile platform. To take advan-
tage of idle times, most devices offer the ability to transition into low
power states. However, the amount of energy saved by utilizing these
sleep states depends on the lengths and number of idle periods expe-
rienced by the device. This paper describes a new process scheduling
algorithm which accumulates device usage information in the form of
device windows to make power a first class resource: it attempts to in-
crease the burstiness of both device accesses and idle periods, and it pro-
vides enhanced behavior for timeout-based sleep mechanisms. An initial
implementation based on the default Linux scheduler demonstrates the
algorithm’s and approach’s ability to reduce the average power consump-
tion of devices by increasing device sleep times and reducing transition
overheads.

1 Introduction

Mobile devices have become a popular platform for both personal and commer-
cial applications. The increased use of these devices has in turn emphasized the
demand for maximizing their battery lifetimes, making power efficiency a criti-
cal design goal. Indeed, in order to enable these devices for end users, it is often
necessary to employ software techniques in addition to hardware optimizations
to achieve the battery lifetimes required by end users. As a result, commercial
systems now routinely employ power reduction techniques, ranging from dim-
ming displays, to spinning down disk drives, to turning off (or placing into sleep
modes) devices during idle times [1, 2].

An issue faced by most current dynamic techniques for reducing energy us-
age is that they should not lead to reduced productivity in mobile device usage.
Stated more precisely, system metrics like job throughput should not be unduly
affected by devices operating in sleep or idle modes. In other words, while re-
ductions in energy usage indicate the need for increasing the burstiness of device
usage and thereby improving the extents of device idle times, the consequent
changes in the ways in which jobs are executed must not substantially reduce
user-centric measures of job scheduling like throughput or response time.

M. Beigl and P. Lukowicz (Eds.): ARCS 2005, LNCS 3432, pp. 18–32, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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This paper explores a new system-level technique for process scheduling
which uses information about a process’s device usage to make scheduling de-
cisions. In particular, device usage information is correlated to a process using
device windows. The goal of the resulting window-based process scheduler is to
utilize this information to schedule processes in a manner which (1) increases
the burstiness of device accesses, and (2) increases the durations of idle periods.

As with related work [3, 4], we assume that the determination of when and
how long to put devices to sleep is made at the operating system level, in part be-
cause the OS has ready access to the internals of device drivers and performance
counters needed to implement effective power measures for power reduction. Con-
sequently, our initial implementation of device window-based scheduling extends
the Linux process scheduler on a hardware platform representative of portable
devices, using an experimental version of a handheld device that uses Intel’s
XScale processor. Experimental evaluations of window-based scheduling rely on
application scenarios that emulate reasonable device usage patterns. Power mea-
surements use a wireless network device based on the standard 802.11 sleep pro-
tocol. These measurements illustrate the ability to save power with this schedul-
ing approach. An analysis of time spent in low power modes and device accesses
is also provided. Results indicate improvements of up to 18% in time spent in a
low power state and 25% in average power consumption with our wireless 802.11
device.

2 Related Work

There are multiple approaches to the problem of energy reduction in portable
devices. Recent processor architectures like Intel’s XScale permit dynamic fre-
quency and voltage scaling (DFS/DVS), which can be used to reduce power
consumption during program execution [5]. Process schedules can be adjusted to
take advantage of these techniques while also meeting application-level require-
ments like task deadlines [6, 7]. In order to build power-aware hard real-time sys-
tems, a design framework that allows for the exploration of power/performance
tradeoffs is proposed in [8]. By combining system-level techniques with appli-
cation-level adaptations, further savings in energy usage can be attained, as
shown for multi-media applications [9]. Other methods use compiler-based infor-
mation to create a compiler/OS collaborative system for frequency scaling [10].

In [11], the authors present an operating system approach that extends the
lifetime of a system to some user-specified length by making power a first class
resource, and by allocating power strictly to processes. This approach is extended
to modified scheduling algorithms in [12]. While increasing device lifetimes, these
approaches, however, do not provide any user-level guarantees like throughput or
deadlines. In [13], the author utilizes hardware performance counters to perform
energy accounting, and proposes energy-aware scheduling techniques based on
this accounting.

There has been substantial research on utilizing device idle periods, much
of it concerned with communication devices. In [14], the authors propose the
use of a separate low power channel to better determine when to turn off the
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device. In [1], a modification of the 802.11 protocol at the client and base station
is used to collaboratively determine when to put a wireless device to sleep. An
adaptive protocol for making device-level sleep decisions is introduced in [15].
The approach is based on the secondary effects of powering down wireless devices
on higher layer protocols such as TCP. For greater flexibility, in [16] the authors
propose a new application interface for system I/O to provide energy-aware
resource usage.

For multiple devices, given a predetermined task schedule and device usage
list, [17] describes an algorithm to determine a schedule for device sleep/working
states. Given perfect knowledge of tasks’ device usage, [18] presents an algorithm
that schedules tasks so as to maximize device idle periods. In [19], the authors
combine this approach with decisions about when to turn devices on or off using
runtime information about per-process device utilization.

Our approach is inspired by the multi-processor scheduling algorithm pre-
sented in [20], where the authors utilize processor-cache affinity information to
schedule tasks to minimize cache overheads. We develop a power analogue of
that approach, the goal being to reduce power consumption by bursting device
accesses. The idea is to develop a lightweight dynamic process scheduling al-
gorithm that manipulates inter-device usage characteristics in order to reduce
system-level energy consumption. Unlike previous work, we attempt to provide
power-enhanced scheduling without any specific information from applications
or compilers.

3 Motivation and Approach

3.1 Background

It is well-known that the sizes and distribution of device idle periods can dra-
matically affect the amount of power that is saved by putting them to sleep.
We focus on two particular interactions between idle periods and power saving
mechanisms, which are the interactions of idle time distributions with (1) state
transition overheads and (2) sleep timeout overheads. Figure 1 illustrates how
the distribution of idle periods can affect these attributes. The example depicts
a scenario with four periods of device usage. Power state transitions are repre-
sented with dotted arrows, and timeout periods with dashed areas. Note that
timeout periods overlap with idle periods of the device.

I2
I1 I3

I1 I2 I3+ +

Fig. 1. Bursting Device Accesses.



Reducing System Level Power Consumption 21

When the three periods of device usage are coalesced into one larger one,
total idle time remains the same, but the device avoids two timeout periods and
four state transitions. This results in an increased time spent in sleep state with
the same idle time (due to both timeout and state transition overheads). As an
example, a wakeup state transition for the 802.11 wireless device can take about
250μs during which time the card consumes the amount of power required for
the idle state [21], resulting in an energy consumption of approximately .2mJ
per wakeup when the card consumes 755mW more power in idle mode than in
sleep mode [22]. The energy cost of a timeout period is given by Equation 1,
where Pidle is the average power consumed when idle, Psleep is the sleep power
of the device, and tto is the timeout period. Each timeout that is avoided saves
Eto. Using our wireless example again, with a typical timeout value of 10ms,
Eto is approximately 7.55mJ. Therefore, by reducing the number of timeouts,
and by amortizing the cost of both timeouts and state transitions with longer
sleep periods, ‘bursting’ device accesses can benefit power consumption. For the
specific case of wireless network devices, this behavior is also exploited in [22].

Eto = (Pidle − Psleep) ∗ tto (1)

The principal goal of our scheduling approach is to manipulate process sched-
ules in order to provide power-efficient inter-device usage times. Given perfect
knowledge of device usage requirements for processes, it is possible to determine
an optimal schedule for both process execution and the associated schedule for
toggling the sleep modes of devices. This paper’s approach addresses the more
common scenario in which the operating system must schedule processes and
manage device states without apriori information about device usage. As a re-
sult, we do not require applications to adhere to a specific API to take advantage
of device window scheduling, nor do we assume hints or program information
provided by compilers. Instead, the idea of process scheduling based on device
windows is to dynamically develop information about a process’s pattern of
device usage based on its past behavior. Past behavior is collected using de-
vice windows, which are then used to help schedule processes in order to create
suitable inter-device usage times. Stated concisely, (1) device usage information
collected at runtime is used to estimate the lengths of device usage patterns,
based on which (2) process schedules are changed to better distribute device idle
periods (i.e., increased burstiness).

An interesting issue with device idle periods is to make them large enough to
enable low power modes but also sufficiently small to avoid device timeouts. This
is because systems use timeouts to determine when or whether a device should
enter sleep mode. That is, a device enters sleep mode after some pre-determined
timeout period and is woken up as soon as it is used by some process. The ag-
gressive approach of using very small timeout values can lead to overall increases
in energy usage due to the overheads of frequently toggling device states, and it
may also cause additional, wakeup-caused delays for the applications using the
device. Conversely, using a conservative timeout value can result in achieving
only a fraction of the total possible energy savings. In this context, then, one
task of device window scheduling is to create ‘good’ inter-device usage times.
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In order to illustrate the approach, assume that only one device is under
consideration and that the scheduler is aware of whether or not a process will use
the device the next time it runs. Given this information, the scheduler can ‘burst’
device access by first scheduling all of the tasks that will use the device and only
then running the tasks that will not (or vice versa). Unfortunately, schedulers do
not have perfect information about future device usage by processes and must,
therefore, use some predictive mechanism. The mechanism advanced in our work
assumes that processes begin executing with ‘empty’ device windows. Whenever
a process executes on the CPU, its device window is updated to reflect whether
or not the device is used. We next define device windows and their usage in more
detail.

3.2 Device Windows

The role of device windows is to provide information to the scheduler in order
for it to determine the next process to be scheduled. There are two kinds of
device windows: (1) process device windows and (2) system device windows.
Process device windows are used to estimate the likelihood of a process utilizing
a device during its next execution period on the CPU. For each device in the
system, a unique device window is included in the state of each process. These
device windows are updated whenever a process stops executing on the CPU.
Specifically, device windows are implemented as statically sized sliding windows.
Each time a process is removed from the processor, the window entries are shifted
to the right, and the ‘last’ (leftmost) bit is set if the device was used during the
past execution period.

In addition to the device windows allocated to each process, our scheduling
algorithm requires some system-wide state. This is realized with system device
windows that capture system state rather than per-process information. Similar
to process device windows, there is a unique system device window for each
device. These windows are updated simultaneously with process device windows
whenever a process is removed from the processor. Figure 2 illustrates the design
of our system with respect to device window state.

Given process and system device windows, the scheduling algorithm deter-
mines the most appropriate process to schedule next. When doing so, the sched-
uler must compare the significance of multiple device windows. This comparison
is performed by determining device window “values”. The value of a device win-
dow is a function of its bits. One possible function is to count the number of

Process 2

Process Device Windows Process Device Windows Process Device Windows
System Device Windows

Process NProcess 1

Fig. 2. System Device Window Design.
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‘set’ bits in the device window. With larger device windows, however, it may be
necessary to not just consider the number of set bits, but also their distribution.
For example, consider a device window of [00101] and [11000]. Both have two
set bits, but the latter window represents a process that has used the device
during its two most recent execution periods. To quantize this difference, de-
vice windows can also be compared by the binary values of their bits. In the
example, this would result in comparing device window values of 5 and 24. Note
that this approach exponentially reduces the significance of a device window bit
whenever the window is shifted. Therefore, we define device windows that cal-
culate their values in this manner as ‘exponential’ device windows. The decision
of which type of device window to use is left as a design parameter. In our ex-
periments we utilize exponential device windows for process state, and normal
device windows for system state.

An issue is the size of both system and process device windows. With larger
windows, the scheduler can accumulate usage data over longer periods of time.
The tradeoff, however, is that the information in a longer device window may not
accurately represent the current execution characteristics of the process (i.e. the
data may become stale) for low latency devices. Similarly, small device windows
may be too dynamic for higher latency devices. Therefore, device windows should
be sized in proportion with the latency of the respective devices to which they
are assigned. For system device windows, we utilize a static size of ‘one’ to allow
the scheduler to quickly adapt to changes in device usage patterns of the system.

A final attribute of device windows is the use of window value thresholds.
Thresholds are used for both process and system device windows. For process
device windows, if the value of the window is greater than the threshold, then the
scheduler will predict that the process is likely to use the device the next time
it runs on the CPU. We define the Active Device Set (ADS) of a process as the
set of devices for which the device window value is greater than the threshold.
For system device windows, if the window value is greater than the threshold,
the scheduler will consider that device as being active in the system. Similar to
processes, we define the system Active Device Set as the set of devices which are
determined to be active in the system. Table 1 lists the various device window
parameters discussed in this section.

3.3 Device Window Scheduling

The goal of energy-efficient scheduling is to obtain burstiness in device usage.
That is, if a device is not currently being used, then preference should be given

Table 1. Device Window Parameter Definitions.

Parameter Definition

size number of bits allocated for a device window

value set bit count (normal) or binary value (exponential) of device window

threshold comparison value for a device window

ADS set of device windows for which value > threshold
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Table 2. Scheduler Parameter Definitions.

Parameter Definition

S0,i 1 if System device window value less than threshold for device i,
0 otherwise

S1,i 1 if System device window value greater than threshold for device i,
0 otherwise

P0,i,p 1 if Process device window value less than threshold for process p
and device i, 0 otherwise

P1,i,p 1 if Process device window value greater than threshold for process p
and device i, 0 otherwise

Wi,p Process window device value for process p device i

Wi,max Maximum window device value for device i

λi Weight value for device i

to processes that are not likely to use it. If a device is in use, then processes
with high device window values should be preferentially scheduled. We term the
previous action as ‘idle bursting’ (IB) and the latter as ‘device bursting’ (DB).

As described in Section 3.2, the scheduler utilizes threshold values along with
system device windows to determine what devices are active in the system. If a
device is active, the scheduler will try to perform device bursting for it, otherwise
it will attempt to perform idle bursting. In particular, as described in Table 2,
the parameters S0,i and S1,i denote whether the scheduler should perform idle or
device bursting, respectively, for device i. Given the parameters in the table, we
define the maximizing function in Equation 2, where K is the number of devices
considered by our scheduler.

M(p) =
K∑

i=1

λi(S1,iP1,i,pWi,p + S0,iP0,i,p(Wi,max − Wi,p)) (2)

The value returned by Equation 2 depends upon the bursting mode currently
occupied by the process system. The Wi,p value for a process is only included in
the returned value if the scheduler should perform device bursting for device i.
Similarly, the value (Wi,max − Wi,p) is factored in the value of the maximizing
function if the scheduler should perform idle bursting. Given the scheduling
parameters and our maximizing function, our simple scheduling algorithm is
Algorithm 1. The precise behavior of this process scheduling algorithm depends
upon the number of devices under consideration.

Algorithm 1 Device Window Scheduling Algorithm.
∀ Processes i, j ∈ Runnable

Choose Process i s.t. M(i) ≥ M(j) (∀j �= i)
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Scheduling with a Single Device. Given a single device, the behavior of
device window-based scheduling is straightforward. If the scheduler determines
that it should perform idle bursting, it will choose the process in the run queue
that has the smallest window value, thereby attempting to elongate an exist-
ing idle period. Similarly, if device bursting should be performed, the scheduler
searches for the process with the largest window value, since a higher window
value signifies an increased likelihood that the process will use the device when
it is scheduled on the CPU.

Scheduling with Multiple Devices. When the scheduler must consider mul-
tiple devices, its behavior is best described using the idea of Active Device Sets
(ADS). In particular, the algorithm will give highest preference to processes
whose Active Device Sets match the system ADS. If no such processes exist,
preference is given to processes whose device sets intersect as much as possible
with the system ADS. Note that the scheduler gives least preference to processes
that have device sets disjoint from the system ADS.

Device Weight Values. The notion of device weights is included in the max-
imizing function in order to allow the scheduler to give preference to scheduling
for particular devices. Specifically, these weights can be used to give preference
to creating idle periods for high latency devices with larger timeout values and
larger state transition overheads. The motivation is that it is often beneficial,
in terms of system power, to increase the number of state transitions for a low
latency device in order to allow a device with higher overheads to remain idle.

4 Scheduler Implementation

4.1 Linux Scheduler Modification

Our initial implementation of device window scheduling is based upon the epoch-
based Linux scheduler. The default Linux scheduler picks a runnable process
which has the maximum value returned from the goodness() function. This
function will return zero if the process has zero time quantum remaining. If
all processes are out of time quanta, the scheduler reassigns quanta to initiate
another epoch.

We utilize the goodness() function to implement device window-based sched-
uling. In particular, if a process is both runnable and has a non-zero quantum
value in the current epoch, we add the value returned by our maximizing function
in Equation 2 to the goodness value. Therefore, we do not modify the usual
behavior of the Linux scheduler in terms of epochs and assigned quantum values.
Instead, we attempt to provide improved device access behavior by reordering
process execution in a given epoch.

4.2 Performance Considerations

Given the scheduling algorithm described in Section 3.3, the scheduler can starve
certain user tasks by continually scheduling processes that are either I/O- or
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CPU-bound. This can result in poor performance with respect to application-
level requirements like response time or other soft real-time guarantees. Our
implementation of device window process scheduling prevents such behavior by
taking advantage of time epochs in the Linux scheduler. Specifically, tasks can-
not experience starvation because our scheduling algorithm will not extend a
process’s time quantum to increase the length of an idle or busy period for a
device. Instead, we attempt to make device usage/idle periods as bursty as pos-
sible within the constraint of the epochs. This ensures that applications do not
experience any less service than they would with the normal Linux scheduler.

5 Experimental Evaluation

5.1 Sitsang Evaluation Platform

Device window scheduling is experimentally evaluated on XScale-based plat-
forms using Intel’s Sitsang evaluation board. This evaluation board is based
upon the Intel PXA255 processor. The PXA255 processor integrates the Intel
XScale microarchitecture with various controllers and peripherals including a
memory controller, universal serial bus support and DMA controller. The eval-
uation board offers additional features, including a CompactFlash slot, infrared
receiver, and a slot for Secure Digital memory cards. The operating system used
with the evaluation platform is a patched version of the Linux 2.4.19 kernel.

We have chosen to use this evaluation platform for two reasons. First, it is
somewhat representative of the future ’high end’ cellular phone platforms now
being developed. Such platforms are intended to replace what are now multiple
devices carried by end users, like PDAs, cell phones, or calculators, into single,
multi-function devices able to carry out a wide variety of tasks. XScale processors
are used because of their high level of energy efficiency, their support of both
frequency and voltage scaling, and similar capabilities. The Sitsang platform
represents a simple model of such future devices in a PDA-like form factor, but
with limited device connectivity. To evaluate the scheduler, we attach a Linksys
WCF11 wireless network card to the Sitsang board, as well as a USB hard disk.

5.2 Operating System Modifications

We modify the Linux 2.4.19 source with the scheduler implementation described
in Section 4. This modification consists of modifying the existing goodness()
function to utilize our maximizing function when applicable, and the addition of
device window state in both process and global state. We modify the scheduler
to update device windows whenever a process is removed from the CPU.

In order to support the experimentation described in this section, we also
modify the Linux operating system to include some monitoring functionality.
The modification implements monitoring functionality in order to detect when
processes uses the devices under consideration (802.11 and disk). This infor-
mation is then used to update the process and system device windows in the
scheduler. In particular, we update monitoring state whenever a process either
reads or writes to these devices.
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Table 3. Experimental Applications.

Application Description Devices Used

A Background tasks None

B Data computation and transmission 802.11

C Periodic data update 802.11

D Audio Streaming 802.11

E Image Streaming 802.11

F Audio Streaming w/Save 802.11 & Disk

G Image Player Disk

5.3 Application Scenarios

The ability to save energy through process scheduling strongly depends on the
mix of application processes running on the mobile device. The experiments con-
ducted in this paper envision scenarios with applications that would reasonably
be executed on a mobile device. Table 3 lists the applications being used.

Our experimental evaluation attempts to reflect reasonable platform usage
by creating different scenarios, each comprised of multiple applications. All
of these scenarios include sporadic background computational tasks (applica-
tion A). Application B is a simple application that performs computations and
then transmits data over the network. This application mimics the behavior of
many programs executed on mobile platforms, including those that manipulate
data obtained from sensors or context, and then send it back to a data sink.
Application C imitates the type of updates a cellular phone or PDA may send
over the network to a back end server. The remaining applications are used to
capture multimedia program behavior.

Table 4. Experimental Scenarios.

Scenario Applications Used

1 A,B,C

2 A,B,C,D

3 A,B,C,E

4 A,B,C,F

5 A,F,G

Given the list of applications, Table 4 depicts the experimental scenarios
executed in the evaluation of device window-based scheduling. We next describe
the metrics that are used to quantify the benefits of device window scheduling.

5.4 Evaluation Metrics

As described in Section 3.1, the intent of device window-based scheduling is to
improve energy efficiency by increasing the lengths of device usage periods and
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idle periods. By increasing the lengths of idle periods, the approach (1) creates
sleep periods that previously would not exist due to timeouts (i.e., the original
idle periods are shorter than the timeout value) and (2) amortizes the costs
of state transitions and timeout periods with longer sleep periods. Given these
two characteristics, device window scheduling should directly impact the average
energy consumption of a device.

For our first four experimental scenarios, we utilize power measurements
of our wireless device to evaluate performance. The fifth and final experimental
scenario focuses on the disk device. In particular, we investigate how this process
scheduling approach influences the access behavior experienced by the device.
We do this by collecting and analyzing traces obtained during the execution of
the experimental scenario. In particular, we analyze the traces using the formula
given in Equation 3. Both of these evaluation methods are discussed in more
detail below.

Mperf =
tsleep(tto)
#Strans

(3)

Power Measurements. Power measurements with and without device win-
dow scheduling are conducted for the wireless device scenarios. The goal is to
experimentally illustrate the benefits derived from the increased burstiness of
inter-device usage distributions for creating periods of low current draw in de-
vices. For the device sleep algorithm, the standard 802.11 sleep mode is invoked
with the iwconfig system utility. Since our wireless card is a compact flash de-
vice, it uses a power supply voltage of 3.3 volts. To prevent reducing this supply
voltage during measurements, we use a ‘current sensor IC’ (integrated circuit)
to measure the current flowing to the CF socket, without disturbing the voltage
source. The output from the current sensor is then amplified via an analog cir-
cuit to obtain measurements. We simultaneously measure the source voltage, as
well, in order to obtain accurate average power numbers. An oscilloscope samples
both channels at a 4kHz sampling rate, and is capable of buffering 4 seconds of
data at a time. Therefore, we obtain repeated measurements during a scenario
execution to get the average power consumption over a two minute window. We
present the mean and standard deviation of these final values as our result.

In addition to these values, we analyze the distribution of current values to
determine how much time the device spends in a low power state with and with-
out our process scheduler. The reasoning behind this metric is that the overall
power benefit of our scheduler is dependent upon the energy characteristics of
the device. Therefore, we compare the percentage of time that the wireless de-
vice spends in low power state in our scenarios to illustrate the capability of the
device window scheduler to increase the sleep time a device experiences.

Disk Access Analysis. As described earlier, we utilize the metric given as
Equation 3 to evaluate the performance of our scheduler in our final experimental
scenario. The amount of sleep time the device experiences is the numerator of our
formula (tsleep), and is a function of the timeout value (tto) that is considered. In
particular, we utilize our execution trace to calculate the time between accesses.
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If such a period is longer than the considered timeout value, we calculate the
difference as sleep time, and add two state transitions (one to power down device,
and one to power it up for the subsequent request). Note that this metric is
directly proportional to sleep time, and inversely proportional to the number of
state transitions (Strans). We present the result of this metric as a function of
possible timeout values. In this particular case, the disk device does not support
the types of timeout values we consider, but we feel that it is reasonable to
perform this general analysis of the traces as an evaluation of the behavior of
our scheduler.

5.5 Evaluation Results

We present the results of power measurements in the first four experimental
scenarios in Table 5. First, it is apparent that device window-based scheduling
significantly impacts the average power consumption of the wireless device. Sav-
ings from 50mW to 100mW, or about 10%–25%, can be observed. We also see
substantial improvements in the time spent in low power mode. These improve-
ments vary from 6%–18%.

Table 5. Power Results of Wireless 802.11 Device.

Scheduler Scenario Average Power % of time in Low Power Mode

Default Scheduler 1 417±4 mW 33%
Device Window Scheduler 1 313±8 mW 51%

Default Scheduler 2 389±5 mW 39%
Device Window Scheduler 2 336 ±8 mW 48%

Default Scheduler 3 547 ±12 mW 16%
Device Window Scheduler 3 496 ±11 mW 24%

Default Scheduler 4 411 ±7 mW 40%
Device Window Scheduler 4 363 ±3 mW 46%

In addition to improving average power consumption by increasing the per-
centage of time spent in low power mode, the device window scheduler also (1)
reduces power by saving energy when it avoids timeout periods and (2) reduces
state transition overheads by amortizing their costs over longer sleep periods.
We illustrate these benefits with our fifth and final experimental scenario.

Figure 3 presents the analysis of our disk access trace with the evaluation
metric given in Equation 3. The figure shows that device window scheduling
creates extended sleep periods, and for longer timeout values, creates sleep pe-
riods that would otherwise not exist. In the particular case of a disk device, this
behavior is the result of allowing better write back behavior due to bursting and
elongated idle times. This type of disk write behavior is typical for applications
such as media download, retrieving HTTP objects, and storing sensor data. Uti-
lizing the value of our evaluation metric, we also see that our scheduler can
substantially reduce the cost of state transitions by increasing the ratio of sleep
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Fig. 3. Disk Access Performance Benefits.

time to the number state transitions. Combined with the energy results from
the previous evaluation scenarios, this illustrates that device window scheduling
can indeed provide significant power benefits on realistic platforms, by reducing
the amount of power consumed by devices.

6 Conclusions and Future Work

System-wide methods for reducing the energy usage of mobile devices remain an
active topic of research [7]. The approach taken in this paper is to have the OS
scheduler exploit information about processes’ devices usage patterns to enhance
device usage behavior, particularly, to increase the burstiness of device usage and
of device idle times. The device window scheduling algorithm presented in this
paper conserves energy by improving processes’ inter-device usage distributions.

Device window-based scheduling is implemented in the Linux operating sys-
tem kernel for the Sitsang XScale evaluation platform for future embedded de-
vices produced by Intel Corporation. Performance measurements on this plat-
form with representative application benchmarks evaluate the potential of device
window-based process scheduling, demonstrating substantial improvements in
both power and time spent in low power modes. We also analyze access traces of
disk devices to project the benefits of our approach with varying timeout values.

Our future work is threefold. First, we plan to implement device window
scheduling for a real-time process scheduler in order to avoid the limitations of
extending idle periods suffered by using an epoch-based implementation. Second,
we will investigate the use of dynamic frequency/voltage scaling in our schedul-
ing approach to further reduce platform power consumption. A third direction of
future work is to generalize the single platform scheduling technique presented in
this paper to an entire distributed system, comprised of many power-constrained
devices. Initial ideas on how to conduct that work appear in [23], demonstrat-
ing the importance of gathering and exploiting system-wide information about
application and device power behaviors.
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Abstract. Our aim is to investigate if it is possible to control the
throughput (IPC rate) of a thread running on a multithreaded Java
processor by a closed feedback loop. We implemented a Proportional/In-
tegral/Differential (PID) controller in the processor simulator of the
Komodo microcontroller developed at the universities of Karlsruhe and
Augsburg to simulate the PID controller as an additional hardware mod-
ule. It uses the GP (Guaranteed Percentage) scheduling to control the
thread. Evaluations show that the aimed IPC rate of a thread is achieved
by the controller thus improving the real-time capabilities of the Java
processor.

Keywords: Komodo microcontroller, multithreaded Java microcontrol-
ler, PID controller, GP scheduling, IPC rate

1 Introduction

In today’s microprocessors it is hard to hold real-time bounds because of various
reasons. One reason is branch prediction which is implemented in most modern
long-pipelined microprocessors. If there is a misprediction the pipeline has to be
flushed which costs a lot of penalty clock cycles. For the Pentium III processor
this penalty is e.g. at least 11 clock cycles [2]. So it is not possible to guarantee
a certain throughput (Instructions Per Cycle, IPC) within a small time slice.

Another problem for microprocessors in guaranteeing real-time abilities is
the usage of caches because it is hard to give an estimation for the access time
to the data. If the required data is in the L1 cache or trace cache the access time
is very small, but if it is not in the caches it has to be fetched from the memory
which also costs several clock cycles.

This paper describes an approach to compensate these penalties and thus
improving the real-time features by applying closed control loops. Our testbed
is the Komodo microcontroller developed at the universities of Karlsruhe and
Augsburg [16, 17]. Komodo is a multithreaded Java microcontroller. Key features
are very rapid context switching realized by hardware multithreading and the
real-time scheduling algorithms integrated deeply within the pipeline.

In order to guarantee the handling of hard real-time events on time, the run-
time of the event-handling algorithm must be countable in processor cycles. In
the Komodo microcontroller this is realized by a scheduling strategy called Guar-
anteed Percentage (GP) which has been newly designed for real-time scheduling
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on multithreaded processors [2]. The idea is that every thread gets a certain per-
centage of the processor time and to guarantee this percentage for every thread
in a small time slice, e.g. 100 clock cycles in case of the Komodo microcontroller.
As an advantage this scheduling strategy ensures a strict isolation of real-time
threads against each other and there is a predictable behaviour in time for every
thread.

In order to test the Komodo microcontroller a processor simulator was im-
plemented in the Java programming language. So we are able to modify the
processor architecture with low costs and to test the changes.

As a scalar processor, the Komodo microcontroller normally needs one clock
cycle for the execution of one opcode, but depending on the executed operation
latencies can appear. An example are conditional branches where it firstly has to
be computed if the branch is taken or not. To bridge the latencies induced by this
computation, the multithreaded processor switches to another thread to keep the
overall processing performance. But the real-time behaviour of the single thread
is affected by the latencies. Similar latencies appear on singlethreaded processors
in case of a branch misprediction. More latencies can arise by atomic locks, which
can take thousands of clock cycles.

Therefore we implemented a PID controller in the processor simulator allow-
ing to control the IPC rate of a single thread by varying the GP values of the
threads. By monitorig the current IPC rate of a thread and comparing it to the
aimed IPC rate, the GP value of the thread is adapted in a closed feedback loop.

The goal is to balance the anomalies in the IPC rate which are caused by
latencies and locks. This makes the time behaviour more predictable, because
the execution time of a piece of code can be calculated based on the balanced
IPC rate.

Because of the multithreading property the Komodo microcontroller is well
suited for this task and due to the implementation of the PID controller in the
simulator this corresponds to a hardware implementation of the PID controller.
In this way it is possible to control the threads within zero clock cycles.

The idea of controlling is obviously not limited to the Komodo microcon-
troller. It also works for microcontrollers with similar properties like the Komodo
microcontroller which e.g. support GP scheduling.

2 State of the Art

Several approaches use closed control loops in real-time systems to limit commu-
nication overhead or to perform admission control (e.g. [9, 10]). These approaches
are purely software based. At the time we wrote this paper, to our knowledge
no other work is done using control theory approach to compensate latencies for
real-time applications on a hardware level.

Only in IBM’s Power5 Chip which supports simultaneous multithreading
(SMT), enhanced SMT features are offered. They make a step towards con-
trolling by e.g. reducing the priority of a thread if resources getting rare [7].

Furthermore, our approach is completely different to adaptive microproces-
sors, where resources like caches or queues are adapted at runtime [1, 5, 6, 8, 15].
No control theory nor real-time is addressed there.
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3 The Komodo Microcontroller

The Komodo microcontroller consists of a processor core attached to typical
devices as e.g. a timer/counter, capture/compare, serial and parallel interfaces
via an I/O bus [16]. In the following we explain details about the processor core
which is kept at a simple hardware level because of its real-time applications.

3.1 The Pipeline of the Komodo Microcontroller

Figure 1 shows the pipeline enhanced by the priority manager and the signal
unit. The pipeline consists of the following four stages: instruction fetch (IF),
instruction window and decode (ID), operand fetch (OF) and execute, memory
and I/O-access (EXE). These stages perform the following tasks as described
in [17]:

Instruction Fetch: The instruction fetch unit tries to fetch a new instruction
package from the memory interface in each clock cycle. If there is a branch
executed in EX the internal program counter is set and the instruction package
is fetched from the new address.

Instruction Window and Decode: The decoding of an instruction starts after
writing a received instruction package to the correct instruction window. Hereby,
the priority manager decides which thread will be decoded by ID every clock
cycle.

Operand Fetch: In this pipeline stage operands needed by the actual operation
are read from the stack. It has to be marked that the OF is not realized in the
processor simulator because the runtime does not matter for the simulator [4].

Execution, Memory and I/O-Access: There are three units in the execution stage
(ALU, memory and I/O). All instructions except of load/store are executed by
ALU. The result is send to the stack and to OF for forwarding. In case of
load/store instructions the memory is addressed by one of the operands. An
I/O-access is handled in the same way like a memory access [14, 17].

3.2 GP Scheduling

The priority manager implements several real-time scheduling schemes [2, 4, 17].
For the concern of controlling, only GP scheduling is important. In GP schedul-
ing, the priority manager assigns a requested number of clock cycles to each
thread. This assignment is done within a 100 clock cycle period. Figure 2 gives
an example of two threads with 20% and 80%. This means, thread A gets 20
clock cycles and thread B gets 80 clock cycles within the 100 clock cycle interval.
Of course, these clock cycles may contain latencies. So thread A might not be
able to execute 20 instructions in its 20 clock cycles. Here our approach starts.
By monitoring the real IPC rate, the GP value is adjusted in a closed feedback
loop. If there are e.g. 3 latency clock cycles within the 20 clock cycles of thread
A, its percentage needs to be adjusted to achieve the desired 20 instructions in
the 100 clock cycle interval.
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Fig. 1. The pipeline of the Komodo microcontroller.

4 PID Controller

One goal of automation is to affect an output to achieve a reference value. Often
this cannot be made directly but by affecting an input. The problem is that
the correlation between input and output is not well-known in most cases. So
it is necessary to control the input by continuously observing the output and
comparing it with the reference value in order to minimize their difference by
varying the input [3, 11]. This process is shown in Figure 3. The controller in
this closed feedback loop is responsible for generating the control signal y(t)
from the difference signal x(t). A well known and popular controller is the
Proportional/Integral/Differential controller (PID controller). The functional
equation of a continuous PID controller is as follows:

y(t) = KP ∗ x(t)︸ ︷︷ ︸
P element

+ KI ∗
∫ t

0

x(ν)dν︸ ︷︷ ︸
I element

+ KD ∗ d

dt
x(t)︸ ︷︷ ︸

D element

(1)

Thereby x describes the difference between output and reference value at time
t, and y describes the controller signal at time t. KP , KI and KD are constants
which have to be adjusted.

In the P element, the difference between output and reference signal is mul-
tiplicated by the constant KP . A controller which only uses a P element is not
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Fig. 3. PID controller.

able to eliminate the difference to zero, because KP would have to be increased
if the difference is too small.

The P element can be improved by adding an I element. It integrates over
the past differences and is able to eliminate the difference to zero.

The behaviour of an I element is like a memory because the last differences
are saved. A disadvantage of an I element is its slowness if there are changes.

To make the controller reacting faster on changes a D element is added.
Descriptively seen the D element acts like a predictor for the future difference:

If the absolute amount of the derivative of x at time t is small, the variation
of the difference will be also small. But if the absolute amount of the derivative
of x at time t is big, the variation of the difference will be big.

When using a D element one has to pay attention with the choice of KD,
because the controller can overshoot if the constant is too big.

When working with digital systems it’s not possible to use a continuous
controller because the controller gets the difference only at certain points in
time. Therefore it is necessary to modify the formula above allowing to handle
with discrete values:

yn = KP ∗ xn + KI ∗
n∑

ν=1

xν ∗ Δt + KD ∗ xn − xn−1

Δt
n = 2, 3, 4... (2)
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Hereby xn is the difference at the point of time n and yn is the controller signal
at the point of time n. KP , KI and KD are constants again while Δt is the
duration between the measurement of xn and xn+1.

5 Implementation of the PID Controller

As mentioned above the PID controller is implemented in the processor simu-
lator and it controls the GP value of a single thread. First we start with some
preconditions:

– We assume that the sum of the percentages of all threads is less or equal
than 100 in order to start the threads without using the controller.

– The main thread is a non real-time thread responsible to start all other
threads. So we always assign 1 percent of computing time to the main thread
to guarantee progress of the threads.

Figure 4 shows a schematic diagram of the Komodo pipeline with an imple-
mented PID controller.
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5.1 Measurement of the IPC Rate

In general, the IPC rate of a thread is defined as:

IP C =
Number of instructions executed within time slice

Duration of time slice (in clock cycles)
(3)

Since Komodo is scalar processor, each instruction takes one clock cycle, except
there is a latency. If we distinguish between active clock cycles, where an in-
struction of a thread is really executed, and latency clock cycles, we can refine
the definition of the IPC rate for the Komodo microcontroller:

IP C =
Number of active clock cycles within time slice

Duration of time slice (in clock cycles)
(4)

Hereby the number of active clock cycles of a thread means the number of
clock cycles executed by a thread without the clock cycles used by latencies.
Therefore it’s obvious that both latencies and locks interfere the IPC rate. So
it’s the function of the controller to minimize these interferences in the IPC rate.

We use this formula for various measures: We compute short- and long-term
IPC rates. Short-term IPC rates are measured over a constant time slice of e.g.
400 clock cycles. As longtime IPC rate, the cumulative IPC rate is used. Here,
we compute the IPC rate from the beginning of thread execution up to now. This
means, the duration of the time slice is increasing. While the short-term IPC
rate gives information about variations in the current IPC rate, the cumulative
IPC rate shows the overall behaviour.

5.2 Details of the Implementation

As mentioned above, the priority manger assigns the requested percentage within
a 100 clock cycles interval. This is why we implemented a discrete PID controller,

Control algorithm,
e.g. PID

Microcontroller/
Process

Measurement unit 
for actual IPC rate

-

Interferences,
e.g. latencies, locks

New GP value

Reference
IPC rate

Controller

Fig. 5. Schematic diagramm of the control loop.
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which recomputes the GP value for all threads every 100 clock cycles. Due to
the 100 clock cycle alignment of the priority manager, shorter intervals would
have no effect.

The PID controller is implemented as a part of the priority manager (see Fig-
ure 4). Its control loop is shown in Figure 5: At the end of a time slice the IPC
rate of the controlled thread is measured, and the new GP values of the threads
are computed and updated in the same clock cycle. This procedure is repeated
every 100 clock cycles.

The user has the choice to control a thread by an IPC rate as to a constant
time slice or as to an increasing time slice. So he can choose if the IPC rate
should be achieved within short time or if the IPC rate should be stable as to a
longer time slice.

It’s clear that the controller is only activated if the controlled thread exists
and is hardware-active and software-active, where a thread is hardware-active if
it does not wait for an external signal, e.g. an user input. A thread is software-
active if it does not wait for a resource which, for example, exists only once and
is hold by another thread.

Namely if the controller is active while the controlled thread is in a lock
section, this would increase the GP value of the controlled thread and therefore
the GP values of other existing threads could have to be decreased. So this could
lead to starving of the other threads, including the one who holds the lock.

Therefore if the controlled thread is not software- and hardware-active the
controller is deactivated and the controlled thread gets a minimum amount of 1
percent in this time slice.

The controller uses a slightly modified formula compared to the formula 2
for computing the new GP value of the controlled thread:

yn =
⌊

KP ∗xn + KI ∗
n∑

ν=n−k+1

xν ∗Δt + KD ∗ xn − xn−1

Δt

⌋
(n ≥ 2) (5)

The I element of the controller now integrates about a bounded history be-
cause it’s not always useful to incorporate the whole history, and the results are
rounded off to an integer because it’s only possible to assign a whole number.

Because of the value of yn can be negative, it is the changing of the GP
value. This means that the new GP value of the controlled thread is computed
by adding yn to the old GP value of the controlled thread:

New GP value = Old GP value + yn (6)

The maximum GP value of the controlled thread is 99 because main thread
always keeps 1 percent as mentioned above.

After the new GP value is set for the controlled thread and the main thread,
the GP values of the remaining threads are set. They share the remaining com-
puting time thread by thread as follows:

New GP valuei =
⌊

(100 − New GP valuecrl. Th. − 1) ∗ Origin GP valuei

100

⌋
(7)
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If there is not enough computing time for a thread in this chain it either gets
the rest or, if there is no rest of computing time the thread will be deactivated.
After all, controlling is deactivated if the controlled thread is finished.

6 Evaluation Results

Below we present several evaluation results. There are two diagrams for every
test. In each case the first diagram shows two graphs:

– One graph shows the short-term IPC rate of the controlled thread computed
over a 400 clock cycle time slice. This graph is dashed.

– The other graph shows the cumulative IPC rate. This graph is drawn black.

Seen by the processor these two values are the output of the system.
In each case the second diagram shows the graph which represents the GP

value of the controlled thread. Seen by the processor this value is an input which
is computed based on the IPC rate.

As mentioned above the controller is executed in a 100 cycle loop. Therefore
the unit plotted on the abscissa always amounts 100 clock cycles.

6.1 First Test Benchmark

In the first test benchmark two real-time threads are generated. Each of them
executes some loop cycles and in each loop cycle an output is generated. The
initial GP value of thread 1 amounts 30 percent, and the initial GP value of
thread 2 amounts 70 percent.

As a comparison we present a measurement without controlling first, shown in
Figure 6. Only the values of thread 1 are represented because we always controll
this thread.

The GP value of thread 1 constantly amounts 30 percent but none of the
IPC rates achieves the value of 0.3. The IPC rate as to 400 cycles nervously
varies around 0.22 which can probably be explained by the branches caused
by the loops. Due to the uniform distribution of the IPC rate around 0.22 the
cumulative IPC rate precisely swings into this value.

In the second test we controlled thread 1 by the IPC rate as to 400 cycles.
The IPC rate reference value was set to 0.3 and the controller parameters were
set as follows:

– KP = 30
– KI = 20
– KD = 0.1
– The I element integrated about the last 50 history entries.
– Δt = 1

400

The IPC rate as to 400 cycles strongly varies around the aimed IPC rate of 0.3
which leads to a strong variation of the GP value. Mostly the GP value is about
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Fig. 6. Test without controlling.

Fig. 7. Controlling as to a short time slice.

40 percent and is sometimes amplituding above in order to balance the latencies.
Probably the problem of the latency-caused oscillations cannot be solved because
the controller is not able to predict the branches, and therefore it can only react
belatedly. The cumulative IPC rate achieves 0.3 fast which has the reason in the
absence of locks and the uniform distribution of the IPC rate as to 400 cycles.
In comparison to the first test the controller is well able to achieve an IPC rate
of 0.3.

In the third test we controlled thread 1 by the cumulative IPC rate. The IPC
rate reference value was set to 0.3 and the parameters were set as follows:
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Fig. 8. Controlling as to the cumulative IPC rate.

– KP = 70
– KI = 100
– KD = 0.01
– The I element integrated about the last 50 history entries.
– Δt = 1

400

In this test the IPC rate as to 400 cycles is also amplituding around 0.3 but more
smoothly compared to test 2. The reason is the stabilization of the cumulative
IPC rate from what results the stabilization of the GP values. In fact they are
constant almost all the time.

The most significant difference to the second test can be seen at the begin-
ning. In the second test the cumulative IPC rate is growing up to 0.3 and in the
third test cumulative IPC rate shortly swings around 0.3 and is then stabilizing
on this value.

To explore the limits of the control loop, in the last test we set the refer-
ence value to the impossible IPC rate of 1.0. The thread is controlled by the
cumulative IPC rate.The controller parameters were set as follows:

– KP = 60
– KI = 100
– KD = 0.01
– The I element integrated about the last 50 history entries.
– Δt = 1

400

Fig. 9. Controlling as to throughput 1.
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It is interesting to see that the IPC rate as to 400 clock cycles swings around
0.7 not able to achieve the throughput 1 although the GP value of this thread
amounts 99 percent (The 1 percent remaining is assigned to main thread). The
reason for this effect are latencies and locks which now occur quite often. Espe-
cially the locks devastatingly affect on the cumulative IPC rate which does not
achieve throughput 0.7 at least.

After all, in this test it can be observed that controlling of a thread functions
well with both sort of IPC rates if the reference value is below about 0.7.

6.2 Tests with a Producer Consumer Benchmark

In this test two real-time threads are generated. The producer thread generates
a picture and puts it to a container object. Then the producer waits in an empty
loop as long as the consumer takes up the picture. Then the producer produces a
picture again and the whole procedure is repeated. As long as there is no picture
the consumer also waits in an empty loop. The initial GP value for the producer
amounts 49 percent and the initial value for the consumer amounts 50 percent. In
this test the producer thread is controlled. So we only present the results of this
thread, starting again with a diagram (Figure 10) showing the IPC rate of the
producer without controlling. Although the GP value of the producer amounts
constantly 49 percent its IPC rate amounts at most 0.44. Besides the IPC rate
falls down at regular intervals which can be explained by the empty loops which

Fig. 10. Test without controlling.
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Fig. 11. Controlling as to a short time slice.

are executed by the producer when it waits for the consumer. That’s why the
cumulative IPC rate also amounts at most 0.41 from the beginning.

In the second test we controlled the producer by the IPC rate as to 400 cycles.
The IPC rate reference value was set to 0.49 and the controller parameters were
set as follows:

– KP = 60
– KI = 30
– KD = 0.01
– The I element integrated about the last 50 history entries.
– Δt = 1

400

Here the IPC rate swings around 0.49 with a variation of 0.03 and the down
peaks are compensated by the controller by short and strong increases of the
GP value (see Figure 11). Also in this case this uniform behaviour leads to a
well achievement of 0.49 by the cumulative IPC rate.

At last we tested controlling of the producer thread by the cumulative IPC
rate. The reference value was also set to 0.49. Here it was necessary to strongly
adjust the controller parameters to get an agreeable control behaviour shown
in Figure 12:

Fig. 12. Controlling as to the cumulative IPC rate.
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– KP = 60
– KI = 160
– KD = 98
– The I element integrated about the last 500 history entries.
– Δt = 1

400

In this diagram the differences to the previous two diagrams can definitely be
seen. At the beginning the GP values are strongly varied by the controller be-
cause the cumulative IPC rate and the reference value are very different. This
leads to the effect that the IPC rate as to 400 clock cycles differs strongly from
the reference value at the beginning. By-and-by the variations of the GP values
are decreasing, reasoned by the stabilization of the cumulative IPC rate. Besides
the time intervals, in which the controller varies the GP values, are increasing
also because of stabilization of the cumulative IPC rate.

There were two further ideas which we wanted to test:

1. The computation effort of the controller is strong. Therefore it is possible
that the controller is too slow to compute and update the new GP value
within zero clock cycles. Therefore we decided to update the GP values of
the threads with a delay of 100 clock cycles. This means that the GP values
are computed by the actual values of the IPC rate of the controlled thread.
Then they are saved and updated 100 clock cycles later which is a kind of
pipelining implemented in the controller. In this way some problems occur
e.g. it is possible that a thread is starting which had not existed 100 clock
cycles before. This problem is solved by deactivating this thread as long as
it is not incorporated in the computation.

2. Branch prediction is a technique used in modern superscalar microproces-
sor to ensure continuous instruction fetching. If a branch occurs the branch
predictor is used to predict if the branch is taken or not and fetching is
continued in this way. It is not supported by Komodo since a misprediction
would cost several penalty clock cycles and could harm the real-time ap-
plications [2, 12]. Nevertheless we were interested if it would be possible to
control a thread on a processor supporting branch prediction.
The ID stage inserts three NOPs after a branch due to the pipeline structure
of Komodo. So we modified the ID stage to accidentally insert further NOPs
in order to simulate mispredictions. Precisely if a branch is recognized by ID
stage in 90 percent we simulated a correct branch prediction by inserting only
three NOPs, and in 10 percent we simulated misprediction by inserting 20
NOPs. We decided for 90 percent of correct branch prediction because of the
high quality of today’s branch predictors, and we decided for a misprediction
penalty of 20 clock cycles in order to simulate a long pipeline.

We tested both modifications of the PID controller. Both delay of updating
the GP values of the threads and simulating branch prediction succeeded with
the two test programs. In fact tests with the combination of the modifications
succeeded even by using the same controller parameter as in the tests without
the modifications. Figure 13 and 14 show examples of controlling the producer
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Fig. 13. Controlling by a short time interval with delay of 100 clock cycles and simu-
lation of branch prediction.

Fig. 14. Controlling as to the cumulative IPC rate with delay of 100 clock cycles and
simulation of branch prediction.

consumer benchmark incorporating both modifications. The reference value is
also 0.49 and the controller parameters are the same as in the tests without
the modifications. Figure 13 shows controlling by the IPC rate as to 400 clock
cycles and figure 14 shows controlling by the cumulative IPC rate. It can be seen
that the delay of 100 clock cycles does not matter whereas simulation of branch
prediction results in a greater variation of the IPC rate as to 400 clock cycles
which has the reason in the great misprediction penalty of 20 clock cycles.

In this two examples the controller is also well able to achieve the desired
reference value of 0.49

7 Conclusions

We presented an approach to control the IPC rate of a processor by a closed
feedback loop. The multithreaded Komodo microcontroller served as our testbed.
The evaluation showed that the controller is mostly well able to achieve the
desired reference value even when we tested it with some extensions like a delayed
update of GP values or simulating of branch prediction.
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The goal of GP scheduling is to provide real-time abilities for the threads. In
fact, these real-time abilities of a simple thread can by improved by the controller
by balancing the oscillations of the IPC rate. This makes the execution time of a
piece of code more predictable, it can be calculated based on the reference value
for the IPC rate. A balanced IPC rate is especially very useful when data rates
have to be guaranteed. The tests also showed the limits of controlling when the
reference value gets above 0.7. Then the appearance of interleaves like latencies
and locks is too strong to achieve the aimed reference value.

Until now we tested the techniques of controlling. But in fact it is very difficult
to find controller parameters (KP , KI , KD) by which the controlling process
becomes stable. Therefore, our next step will be to find rules for the parameter
choice with the end goal to give guaranteed upper and lower bounds for the IPC
rate.

A problem is that we improve the real-time behaviour of one thread at the
expense of other threads by assigning them less clock cycles if there is not enough
computing time. So it is possible that the real-time abilities of the other threads
is lost. Therefore, another next step is to control the IPC rate of all threads to
guarantee and to improve the real-time abilities of all threads.
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Abstract. The basis for this work is a model for fine-granular flexibil-
ity of applications in two directions. These are the quality of computa-
tions on the one hand and their timeliness on the other hand. Dynamic
scheduling of quality- and timeliness-flexible tasks on the same hardware
platform as the application itself exhibits two obvious sources of trade-
offs. The first one exists between the desired quality levels for individual
tasks (depending on the processing time awarded to them) and the abil-
ity of these tasks to meet timing constraints. The second one can be
found between the overall distribution of processing time between the
application tasks and the scheduling algorithm. A high processing time
allowance granted to the scheduler may leave too little resources for the
actual application; however, a small scheduling allowance might prevent
finding good schedules according to the given objective function. We use
a control-theoretic approach to allow the scheduler to adapt to the cur-
rent characteristics of the application in terms of workload and frequency
and regularity of task releases automatically at run-time.

1 Introduction

Whereas traditional real-time scheduling schemes emphasize on meeting tim-
ing constraints for a set of tasks, flexible computation models generalize this
simple objective by trading off the compliance of an application with temporal
constraints for the quality of the computations. In many cases, the semantics
of a problem allow a scheduler to degrade the accuracy, granularity or likeli-
hood of correctness of tasks; this property is called quality-flexibility. Other (soft
real-time) applications can tolerate late completion of component tasks to a cer-
tain extent; these problems are timeliness- or utility-flexible. Models for both of
these directions of flexibility have been investigated. In our work we deal with
sets of tasks which are both quality- and utility-flexible and call the problem
class quality/utility scheduling. Dynamic quality/utility scheduling is especially
interesting, because we do not need complete knowledge of an application be-
fore run-time. The meta scheduling problem of finding an optimal allocation of
the available processing time for the scheduling algorithm itself is typical for
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dynamic scheduling. The behaviour of the application and environmental pa-
rameters may change and make adaption of the scheduling allowance and other
scheduler parameters necessary.

In the beginning we will present the formulation of the quality/utility schedul-
ing problem and the basic ideas for schedulers working on this problem class.
Meta scheduling, the simulation environment and some experimental results are
the topics of the following sections.

2 Basic Quality / Utility Scheduling Problem

In this section we will describe the basic problem of trading off the quality of
computations for their timeliness. For the time being, an application consists of
a set of independent tasks to be executed on a single processor.

Consider a set of tasks T = {T1, T2, . . . } with

– release times
rT1

, rT2
, . . .

– monotonically increasing quality functions

qT1
, qT2

, · · · : N0 → R
+
0

– monotonically decreasing utility functions

uT1
, qT2

, · · · : N0 → R
+
0

Quality functions express the progress of tasks depending on their processing
time, utility functions rate the timeliness of the computations. Figure 1 shows
example quality and utility functions. The two kinds of functions are defined
on different time domains: utility functions are based on a global time common
to all tasks. Quality functions are defined on the local time of tasks, i.e., the
amount of processing time allocated to the task.

Schedules for a set of tasks can be written as a collection of local time func-
tions τT1

, τT2
, . . . mapping global time to local time for each task, as demon-

strated for a set of three tasks in figure 2. For the remainder of this work, �τ

denotes the vector of all local time functions and hence represents a schedule for
the task set. Likewise, �q and �u are the vectors of the quality and utility functions
for the current task set, respectively.

Objective functions
v�q,�u(�τ , t)

for the scheduling algorithm are defined on the vectors of quality and utility
functions, the vector of local time functions and the global time and yield real
values.

Schedulers try to approximate the optimal schedule

maxarg lim v�q,�u(�τ , t)
�τ t→∞ .

We propose a set of properties we assume all prospective objective functions
to hold. These are
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a) continuously differentiable quality function b) value-discrete quality function

c) utility function for firm deadline d) value-discrete utility function

Fig. 1. Example quality and utility functions

task T1 task T2 task T3

Fig. 2. Functions mapping global time to local times of tasks

Global time monotony: The objective function must be monotonically in-
creasing in the global time.

Allocation history monotony: The objective function must be prefix mono-
tonic in the vector of local time functions.

Allocation amount monotony: The objective function must be monotoni-
cally increasing in every local time function.

Allocation time monotony: The objective function must be monotonically
decreasing in the inverse of each local time function.

Utility monotony: The objective function must be monotonically increasing
with any utility function of tasks.

Quality monotony: The objective function must be monotonically increasing
with any quality function of tasks.
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One possible objective function obeying above conditions is the following:

v�q,�u(�τ , t) :=
∑
T∈T

max
t′≤t

uT (t′) · qT (τT (t′))

3 Scheduling Algorithms

As mentioned above, we primarily developed dynamic scheduling algorithms for
the presented problem class, because we want to be able to apply the methods to
time-variable task sets with possibly no or incomplete knowledge of the release
times. The dynamic scheduler is invoked repeatedly; these invocations are called
scheduling phases and compute partial schedules for a limited window of time
into the future, starting from current time. The scheduler works on a set of tasks
either released before the beginning of the phase or likely to be released in the
near future (i.e., within the scheduling window). Figure 3 shows that consecutive
windows may (and in fact usually do) overlap, because imprecise estimates of the
release times of tasks may make it necessary to adapt partial schedules before
the end of the window.

Fig. 3. Scheduling phases

As an example application, consider a set of three tasks with the following
release times and quality and utility functions:
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rT1
= 0 uT1

(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 if t − rT1
< 0

1 if 0 ≤ t − rT1
< 6

0.6 if 6 ≤ t − rT1
< 13

0.1 if t − rT1
≥ 13

qT1
(n1) =

⎧⎪⎪⎨
⎪⎪⎩

0 if 0 ≤ n1 < 4
0.3 if 4 ≤ n1 < 8
0.4 if 8 ≤ n1 < 12
0.8 if n1 ≥ 12

rT2
= 2 uT2

(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 if t − rT2
< 0

1 if 0 ≤ t − rT2
< 8

0.2 if 8 ≤ t − rT2
< 12

0 if t − rT2
≥ 12

qT2
(n2) =

⎧⎪⎪⎨
⎪⎪⎩

0 if 0 ≤ n2 < 2
0.1 if 2 ≤ n2 < 4
0.2 if 4 ≤ n2 < 6
0.3 if n2 ≥ 6

rT3
= 5 uT3

(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 if t − rT3
< 0

1 if 0 ≤ t − rT3
< 8

0.7 if 8 ≤ t − rT3
< 10

0.1 if t − rT3
≥ 10

qT3
(n3) =

⎧⎨
⎩

0 if 0 ≤ n3 < 2
0.4 if 2 ≤ n3 < 8
1.0 if n3 ≥ 8

t is the global time, n1, n2, n3 ∈ N0 the local times for T1, T2 and T3.
A first set of schedulers divides the scheduling window into elementary in-

tervals, during which no task changes its utility. For the example task set and a
window size of 16, we receive elementary intervals as in figure 4.

Fig. 4. Calculation of elementary intervals within interval [t0; t0 + ws[= [1; 16[

For the (non-optimal) distribution of units of processing time among the
tasks in the elementary intervals of table 1, we receive the objective function
values of table 2.

We implemented scheduling algorithms based on both simulated annealing
and tabu search working on the search space formed by elementary intervals as
described above. An approach using Lagrangian optimization is applicable to
a slightly modified formulation of the problem. Furthermore, we investigated a
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[1; 2[ [2; 5[ [5; 6[ [6; 10[ [10; 13[ [13; 15[

T1 1 1 0 1 2 0

T2 0 2 0 1 0 0

T3 0 0 1 2 1 2

sum 1 3 1 4 3 2

Table 1. Non-optimal distribution of processing time for example

[1; 2[ [2; 5[ [5; 6[ [6; 10[ [10; 13[ [13; 15[

max
J′≤J

uT1
(J ′) · qT1

(τT1
(J ′)) 0 0 0 0 0.18 0.18

max
J′≤J

uT2
(J ′) · qT2

(τT2
(J ′)) 0 0.1 0.1 0.1 0.1 0.1

max
J′≤J

uT3
(J ′) · qT3

(τT3
(J ′)) 0 0 0 0.4 0.4 0.4

∑
T∈{T1,T2,T3}

max
J′≤J

uT (J ′) · qT (τT (J ′)) 0 0.1 0.1 0.5 0.68

0.68

Table 2. Objective function value for example distribution

scheduler considering possible sets of ready tasks in the near future and comput-
ing strategies for a Markov decision process to act on the various situations that
can be encountered; this method is a reasonable alternative to computing partial
schedules if the release times of tasks cannot be predicted with high accuracy.

4 Generalization of Model

Instead of executing a set of independent tasks on a single processor, we now
introduce a series of modifications to our original model. The first one is the
target architecture now being a heterogeneous multiprocessor system.

The task set is structured in a hierarchy of tasks and subtasks, as shown in
the upper part of figure 5b). This has the advantage of a more natural modelling
of many applications in an increasingly more detailed level. Furthermore, we
can build the application on top of a library of reusable basic algorithms called
methods. Depending on the type of scheduling algorithm, rescheduling may take
place on subgraphs of the entire application graph, and partial solutions to prior
problems can be reused at a later time. Caching mechanisms were introduced
for this purpose, increasing the efficiency of scheduling algorithms significantly.
Finally, different semantics of the nodes of the hierarchy graph can be expressed
by assigning different local objective functions to them; the overall value is passed
on from the leaf nodes to the root in bottom-up manner. For example, in an
and/or graph, child nodes can be interpreted as components or alternatives of
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the parent node and (depending on the logical type of the parent) translated
into different local objective functions.

Application layer:
structured set of tasks with

– release times
– utility functions

Library layer:
set of basic algorithms (methods) with

– quality functions

Hardware layer:
heterogeneous multi-processor archi-
tecture

a) general model b) example application graph

Fig. 5. General model for the quality / utility scheduling problem

In addition to the hierarchy graph, a second graph structure is introduced
between tasks (for example, the subtasks of task T2 in figure 5b)). This graph
can be seen as a value-based equivalent to precedence constraints. The execution
order of tasks influences the objective function. However, execution of tasks in
the wrong order is not prohibited, but only penalized.

5 Scheduling / Execution Tradeoff

As mentioned before, our dynamic schedulers encounter a tradeoff between the
amount of processing time allowed for the scheduler and the one remaining for
the actual application.

Consider a set of three tasks TA, TB, TC with release times rTA
= rTB

=
rTC

= 0 and quality and utility functions

qTA
(n) =

{
0 if n < 4
1 if n ≥ 4 qTB

(n) =
{

0 if n < 5
2 if n ≥ 5 qTC

(n) =
{

0 if n < 2
0.5 if n ≥ 2

uTA
(t) =

{
1 if t < 11
0 if t ≥ 11 uTB

(t) =
{

1 if t < 9
0 if t ≥ 9 uTC

(t) =
{

1 if t < 11
0 if t ≥ 11

For scheduling allowances of 0, 0.3, 0.5, 0.8, and 1, optimal schedules (with a
prefix in each row reserved for the scheduler) are as in the table below. The size
of the search space (ss) is calculated with the simple rule that allocating cpu
time units to tasks with zero utility should be avoided. If the search algorithm
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can make 10 steps in unit time (sut), we receive the percentage of the search
space which can be visited by the scheduling algorithm in the final row.

sa optimal schedule value of optimal
schedule

search space
size (ss)

sa·ws·sut
ss

0 B B B B B B A A A A 3 38 · 22 = 26244 0
0.3 – – – B B B B B C C 2.5 35 · 22 = 972 0.03
0.5 – – – – – A A A A – 1 33 · 22 = 108 0.46
0.8 – – – – – – – – C C 0.5 30 · 22 = 4 20

1 – – – – – – – – – – 0 30 · 20 = 1 100

The scheduler can cover the entire search space in the last two cases. We can
assume that an optimal schedule will be calculated for a scheduling allowance
of 0.8 or 1 and with a reasonably high probability can be found for a scheduling
allowance of 0.5, but with a considerably smaller probability for a scheduling
allowance of 0.3. This is expressed by the suboptimal schedule in row 2 of the
following table. Finally, it is extremely unlikely that the (presumably arbitrary)
solution found for a scheduling allowance of 0 is anywhere close to optimal.

sa schedule value of found
schedule

relative value

0 A B C A B C A B C B 0 0
0.3 – – – A B A A A C C 1.5 0.6
0.5 – – – – – A A A A – 1 1
0.8 – – – – – – – – C C 0.5 1

1 – – – – – – – – – – 0 –

The relative value is highest for partial allocation of the processor time to
the scheduler.

We use a PID controller to decide on appropriate settings for the scheduling
allowance at run-time. Let sai ∈ [0; 1] denote the scheduling allowance for the
i-th scheduling phase. The scheduling allowance is the manipulated variable of
the PID controller. Further, let Δi ∈ N denote the length of the i-th phase
(scheduler phase and partial schedule).

We define the start times of the i-th phase as follows:

t1 = 0 ti+1 = ti + Δi

In the i-th scheduling window, the scheduler is awarded a computation time
of sai ·Δi, the application tasks receive an allocation of (1− sai) ·Δi time units.

As the controlled variable of the controller, we use the change in value density
(the slope of the respective value functions) between two consecutive phases,
expressed by

slopei :=
v�q,�u(�τ , ti+1) − v�q,�u(�τ , ti)

Δi
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Δslopei := slopei − slopei−1

where ti is the start time of a new scheduling phase (figure 6b)).

a) slope0 b) slopei for i > 0

Fig. 6. Change in value density

Obviously, above definition for Δslopei is valid only for i > 1. Therefore, as a
starting point, we use a different definition for slope0 based on the development
of value during the first scheduling phase. For this purpose, we need a parameter
ω ∈]0; 1[ to mark one certain point of the scheduling phase during its lifetime,
namely after reaching a certain percentage of its allowance.

We then define slope0 as the terminal gain between the values after ω · Δi

time units of scheduling and the final value of the schedule for the first phase:

slope0 :=
v�q,�u(�τ , sa1 · Δ1) − v�q,�u(�τ , ω · sa1 · Δ1)

(1 − ω)Δ1

The definition for the special case of the first scheduler phase is shown in
figure 6a).

As the set point, we choose a slope of 0, such that the error function for
scheduling phase i is

erri := Δslopei.

The set point of 0 is chosen due to the following motivation:

– If the slope is negative, too much effort has been spent on scheduling in
the preceding phase, taking too much of the computation time from the
application tasks; the scheduling allowance should be decreased.

– If the slope is positive, it is likely that an even higher allocation of com-
putational resources could result in even better schedules. To exploit this
potential, the scheduling allowance should be increased.
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The integral and derivative parts of the controller measure over a distance of
spi, spd ∈ N0 phase numbers; Cd, Cp, Ci ∈ R

+
0 are user-defined constants. Error

terms erri are defined to be 0 for negative i.
Finally, we can define the control function as follows:

sai+1 = sai − Cd ·
erri − erri−spd

spd
− Cp · erri − Ci ·

spi∑
j=0

erri−j

The initial scheduling allowance, sa1, must be provided by the user.

6 Simulation Environment

An integrated specification and simulation environment called PaSchA (Passau
Scheduling Analysis) for scheduling problems was implemented for the purpose
of modelling real-time applications and testing the scheduling algorithms for
such example applications as well as for generic loads. PaSchA was designed as
a set of tools communicating via message-passing mechanisms and shared files.

6.1 Application Model

A PaSchA application model contains specifications of both a software applica-
tion and the target hardware architecture on which to execute it. Both of these
components are stored within an application graph.

PaSchA allows applications to target heterogeneous multiprocessor architec-
tures as their execution platform. Further attributes of processors are their speed
modes and their power consumption. Non-processor resources contain informa-
tion on how many units of the resource are available and whether units can
be returned to the pool of resources after use or they are consumed and never
become available again.

The software model comprises two kinds of nodes, namely methods and tasks.
Methods can be thought of as basic algorithms available to the application de-
signer as an algorithm library. Both the run-to-completion assumption and the
anytime execution paradigm have been implemented in PaSchA. Based upon the
library of methods, applications are defined by the application developer as a hie-
rarchical task network consisting of a set of task nodes and two distinct graph
structures on them, namely a task hierarchy and a dependency graph. Both
precedence constraints and quality dependencies exist in the PaSchA model. Of
the many possibilities to specify stochastic distributions for release times, geo-
metric and uniform distributions were implemented in PaSchA, as they appeared
to be sufficient for many scheduling problems.

There are two possibilities for timing constraints in PaSchA. The first one is
by traditional deadlines posed on the tasks, i.e., by specifying either in absolute
time or relative to the release time of a task the latest time when it must finish.
The second one is the more fine granular specification of utility by means of
pointwise constant functions of the time passed since the release of a task.
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The two ways to create application graphs for PaSchA are the graphical
editor and specialized graph generators. Figure 7 shows the main window of the
graphical editor with a complete application graph.

Fig. 7. Example application graph in the graphical editor

The simulator component itself can be accessed via a graphical user interface
and an application programming interface.

The visualization components receive their input from the simulator or log
player and display relevant data from the event streams resulting from the (live
or recorded) interaction between the simulation of the behaviour of an appli-
cation and the decisions made by the scheduler. As examples, we show two of
the view modes in the following: The time view mode (figure 8) is an extended
form of Gantt charts, displaying the state of the task set on a common time
line. Information like the release and termination of tasks, their activation and
usage of resources and processors as well as the quality values achieved by in-
dividual nodes can be shown over a rather wide time range. The statistics view
mode (figure 9) gives the user the opportunity to derive secondary data on the
application and the schedule. Among the quantities that can be included here
are processor utilization, residence time or waiting time of tasks, or the number
of ready or working tasks at any time. From any individual quantity, several
additional pieces of information can be recorded, e.g., arithmetic and geometric
mean, standard deviation, etc.

Scheduling algorithms for the PaSchA system must be implemented in Java
and extend the scheduler base class provided by the system. As a minimum
requirement, a scheduler class must implement three methods:
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Fig. 8. Time view mode

Fig. 9. Statistics view mode

– a compatibility test for application graphs
– an initializing method for the scheduler
– a method for execution at each point in simulator discrete time

Among the optional components of a scheduler class is a scheduler-specific graph-
ical user interface to edit the parameters. Numerous dynamic and static schedul-
ing algorithms have successfully been implemented in PaSchA.

In order to perform automatic benchmark tests for scheduling algorithms, the
appropriate application graph or generator configuration along with the neces-
sary parameter sets are defined within Java test cases. The input data as well
as the results produced by scheduler and its interaction with the simulator are
stored in a database for later evaluation.

7 Results

Our experimental work included a test series with a family of graphs with 10
tasks 1 with a processor utilization between 1.3 and 7.6 (the algorithms are pri-
marily intended to work in overload situations), and quality and utility functions
1 the term family referring to the fact that the graphs have the same topology, i.e.,

hierarchy graph, dependency graph, and processor specification
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in the tests were piecewise constant with qT (n) = 0 for n < nq,1, qT (n) = c ∈ R
+
0

for n ≥ nq,2, uT (n) = 1 for n < nu,1 and uT (n) = 0 for n ≥ nu,2 and a finite
number (with given maximum) of constant sections in between.

The settings for the controller parameters were as follows:

Cp Ci Cd spi spd

0.3 0.6 0.1 5 5

Tests showed that the controller was able to stabilize after a small number
of scheduling phases (figure 10a)) and that the flexible setting of the scheduling
allowance outperforms most runs with fixed values for the scheduling allowance
(figure 10b)). Although there are clearly cases where this is not true, remember
it is virtually impossible to find the optimal scheduling allowance by offline
analysis. Furthermore, obviously no fixed setting of the scheduling allowance can
be appropriate for applications with task release frequency changing dramatically
with time (e.g., intervals with few long-running tasks taking turns with larger
numbers of short tasks).

Simulation results also showed [1] that in non-overloaded situations tradi-
tional dynamic scheduling mechanisms outperform the techniques described in
this work, primarily due to a smaller computational overhead at runtime. In
non-overloaded settings, the control mechanism could be used for adapting the
parameters of the scheduling algorithm rather than the scheduling allowance;
however, this remains work still to be done.

Finally, the decision for one of several available alternative scheduling algo-
rithms may also be made online. [1] demonstrates the sensitivity of the scheduling
results to the chosen algorithm at verying side conditions, especially with load
and the predictability of release times.

a) stabilization of PID controller b) fixed vs flexible scheduling allowance

Fig. 10. Tests for meta scheduler
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8 Related Work

Probably the first work on timeliness-flexible scheduling was by Locke and Jensen
[2, 3], who developed a repair-based method and called it best-effort scheduling.
It estimates the probability of a future overload situation and uses heuristics
to reduce the load. Heuristics for this purpose were also suggested by Aldarmi
and Burns [4], by Mossé et al. [5] and by Morton and Pentico [6]. Tokuda,
Wendorf et al. [7] investigated the problem of run-time costs for deliberation in
the best-effort scheme. Chen and Muhlethaler [8] took a constructive approach
to timeliness-flexible scheduling. Unlike the best-effort model, their ideas assume
tasks to be non-preemptive.

Among the best-known quality-flexible models are anytime tasks described by
Dean and Boddy [9] and further investigated by Zilberstein [10]. A very similar
idea is that of flexible computations by Horvitz [11]. Imprecise computations
(Burns, Bernat et al. [12]) take the two-stage approach of guaranteeing a basic
service level offline and optimizing an objective function for optional components
at run-time. IRIS tasks (Dey, Kurose et al. [13]) are similar to anytime tasks,
but do not necessarily have an upper bound on their result quality.

The control-theoretic feedback mechanism was adopted from the work of Lu,
Stankovic et al. [14] on feedback-controlled EDF (FC-EDF); however, the system
model and the objectives in their work are different from the ones described in
this article. Whereas FD-EDF assumes fixed execution times for tasks and em-
phasizes on admission or rejection of new tasks by means of a PID controller, in
our context the controller operates on the processing allowance for the scheduling
algorithm.

The basic model of quality/utility scheduling was presented in [15]. Experi-
mental results and extensions to the basic model can be found in more detail in
[16] and [17].

9 Conclusion

In this work we were able to demonstrate the feasibility of scheduling algorithms
for task sets exhibiting both the properties of quality and timeliness flexibility.
We were also able to describe the much more general simulation environment
with which all our experimental results were gained. The tradeoff between the
effort of scheduling and execution of the resulting schedules could be shown.
We suggested a control-theoretic mechanism to find appropriate levels of the
scheduling allowance at run-time and found that the controller was able to sta-
bilize after a small number of scheduling phases. The scheduling techniques pre-
sented are suitable for flexible firm and soft real-time applications, but do not
easily extend to hard real-time systems, as guarantees on timing or precedence
constraints cannot generally be given for individual tasks.
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Abstract. The trend of increasing mobile services has set a new challenge for 
service providers: how to develop more advanced and user friendly, context-
aware and personalized mobile services for the users. Apricot Agent Platform is 
an agent-based software platform designed for developing context-aware and 
personalized mobile services. Apricot Agent Platform supports the development 
of user-friendly mobile services by providing tools for combining various mo-
bile and Internet-based services. Apricot agent architecture consists of an agent 
platform, agents and agent containers. For the developers of mobile services, it 
provides built-in functionality and communication mechanism. Furthermore, 
this paper describes four demonstrators that are built up on the Apricot Agent 
Platform to evaluate the usability and efficiency of the platform in processes of 
building mobile services. The results of the evaluation indicate relatively prom-
ising results and the further target for development is revealed. 

1   Introduction  

Mobile applications and services have been considered an important era of the infor-
mation and communications technology [1]. The development of mobile network 
technologies as well as mobile terminals has offered users, developers and businesses 
new opportunities to access information, communicate or be entertained. Person-to-
person communication has been the main service for the end users of mobile termi-
nals. In addition to traditional voice communication and voice mail, the Short  
Message Service (SMS) has been dominating the mobile service area, at least in 
Finland [2].  

Manufacturers of mobile devices as well as network operators have been promot-
ing mobile data services such as Multimedia Messaging, Mobile Browsing and Mo-
bile Email. However, the growth in mobile data services hasn’t been as fast as opera-
tors in the market expected. Since the technology is mature enough to produce mobile 
services, there must be other reasons that prevent large-scale use of the services. From 
the regular user’s viewpoint, three factors can be identified that make the use of mo-
bile services complicated: 

• Mobile data services are hard to find  
• Mobile data services are not easy to use  
• Mobile data services do not provide added value [3]. 
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Users know how to use PC and network-based services for viewing, searching, ex-
tracting and maintaining information, they are able to store and process digital content 
and share it with other people and communities. In the mobile context the situation is 
quite the contrary. An average user of mobile phones has just learned how to benefit 
from mobile phone calls and short messages. Neither the technology nor the culture 
for using mobile data services have developed enough that mobile applications and 
services could be considered a real choice for using digital information services. 

In current SMS-based mobile service markets, the customer first needs to know 
about the existence of the service; and secondly he needs to remember the phone 
number of the service and a defined format of SMS message for achieving a certain 
service. For example, in order to acquire a weather forecast, you type the SMS mes-
sage “WEATHER OULU” and send it to the number 12345, and you get weather 
information as a return message. In order to be beneficial to the user, the user should 
be able to get more advanced and versatile mobile services in a simpler way. We 
believe that this can be realized by integrating several mobile or internet services to 
create one combined service that meets the needs of users better than many simple 
services alone. The mobile service would be even more prospective and user-friendly 
if it would automatically deliver the integrated, personified services. However, if the 
idea is to support the users in their tasks when on the move, easier ways to find ser-
vices should be available. Possible solutions might be the use of context information 
or personal preferences to automate the use of search engines [4]. 

Several researchers have proposed the use of intelligent agents for developing 
software applications [5, 6]. Agent systems are also considered suitable for systems 
that integrate existing software systems and therefore assist the users of those systems 
[7, 8]. The first version of Apricot Agent Platform [9] focused mainly on the agent-
based component of the intelligent environment, which manages services on behalf of 
the user. Since the use of mobile devices has increased, the demand on agents accom-
panying users in such devices is inevitable. Mobility has set new requirements for 
agent systems, either the agents or agent platforms must run on small devices like 
mobile phones and PDAs. Or the mobile terminal must be devised with an application 
that provides a user interface to the personal agent running on the server side. One of 
the first lightweight agent platforms is JADE-LEAP [10], a FIPA-compliant agent 
platform that runs on small devices. The CRUMPET [11]-project has made an exten-
sion to the FIPA-OS agent platform called MicroFIPA-OS [12]. MicroFIPA-OS has 
been proposed as a framework for nomadic agent-based applications [13]. 

The Apricot research rises to the challenge set by the availability and usability of 
mobile services for the user. Since there is an obvious need to assist users of mobile 
services, the service developers must be able to easily produce user-friendly mobile 
services. Apricot research approaches the development of user-friendly services step 
by step. As a first step, we have developed an Apricot Agent Platform for mobile 
service developers, through which the mobile services can be produced to provide 
added value for regular users of mobile handsets. The second step will be integrating 
several existing services in a way that is most convenient for the user. 

The aim of Apricot research can be summarized as follows: 

1) Support for developing mobile services in order to help users. 
2) Integration support to combine mobile and web-based services to respond to 

the user preferences in the most convenient way.  
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In our approach to research, we have made several iteration rounds of developing, 
starting from the basic features of the agent platform, such as functionality of the 
agents and mobility.  

This paper introduces the basic architecture of the Apricot platform and gives a 
short description of the implemented demonstrators that has been used for evaluating 
the usability and efficiency of the Apricot Agent Platform for service development. 

The rest of the paper is organized as follows. The next section defines the mobile 
environment and mobile services discussed in this paper. The Apricot platform is 
presented in the next section. The following section describes the implemented dem-
onstrators. Discussion about the findings of this research will be given after the de-
scription of demonstrators and the paper will conclude with a glance at the future 
work.  

2   Mobile Environment and Services 

The main advantage in mobile services compared to stationary information processing 
is the mobility itself. Mobile technology enables people to access digital information 
located in the Internet or be entertained outside the reach of stationary Internet access. 
The mainstream focus of mobile service researchers is called the anytime-anywhere 
principle: requests for services by mobile users should be always satisfied in an un-
changed and transparent way, regardless of the time at which the service is requested 
and the place from which it is requested [14]. 

In this paper mobile service refers to the use of a mobile terminal, such as mobile 
phones or personal digital assistants (PDA), and mobile telecommunication network 
for delivering an electronic service for the customer. The service can be a delivery of 
information (such as news, timetables, tickets, etc,) or entertainment content (like 
video clips, ring-tones, images). The service can also be an operation of an actuator 
controlled using a mobile terminal (remote control, activating lighting, controlling 
heating, etc). The mobile service is typically part of a larger system. In addition to the 
mobile end of the service, there are other components in the service as well. Server 
implementations, networking and databases are typically needed in order to produce a 
feasible mobile service. The mobile service is often a complementary service to other 
electronic services. For example, there may be a downscaled mobile version of an 
Internet site. 

Mobile application refers to program code executed in a mobile terminal. A mobile 
application may use networking capabilities which makes it a part of the mobile ser-
vice. It may also be a stand-alone application. For example, a data collection applica-
tion may in many cases be a stand-alone application. Single-player games, calculators 
and alarm clocks in mobile terminals can also be considered mobile applications.  

In addition to the benefits of mobile technology, there are also great challenges in 
mobile communication and computing. The environment of a person on the move is 
highly dynamic. Restricted computing power and bandwidth, limited memory as well 
as constricted input/output capabilities in the mobile devices make it challenging for 
the mobile service providers to produce services that really benefit the user in her 
tasks and in information needs when one is on the move. Context awareness and per-
sonalization have been studied [15] extensively in order to develop technology to help 
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the users consume electronic services while on the move. Personalization and context 
awareness are also close to the focus of the Apricot project.  

3   The Apricot Platform 

The Apricot platform is a distributed software platform, which provides different 
tools for service development, maintenance and monitoring purposes. The design of 
the Apricot platform is a combination of several different approaches, which are fa-
miliar from the Internet and from the computer systems and their designs. The main 
technologies utilized in the design of the Apricot platform are: Web Services [16], 
Enterprise Java Beans (EJB) [17], FIPA Agent Architecture [18], Semantic Web [19], 
and FIPA Agent Communication Language (ACL) [20].  

3.1   The Apricot Architecture 

The architecture of the Apricot platform follows the FIPA agent architecture. It speci-
fies the main components and system agents, which are the mandatory parts of an 
agent platform. The architecture also specifies the structure of the messages and the 
communication protocol between the agents which are implemented into the platform 
accordingly. The content language used in the agent messages is a XML version of 
the RDF (Resource Description Framework) languages N-Triplets [21]. This conver-
sion is the result of a requirements posed by the mobile terminals MIDP (Mobile 
Information Device Profile) 2.0 Java implementation and the PC’s Java environment. 
Both of these environments lack the build to support RDF parsing, which is not the 
case with XML. N-Triples is a line-based, plain text format for representing the RDF 
abstract syntax. It is a small subset of Notation3 [22]. When N-Triplets are combined 
with the task model of the Apricot agent, it creates a simple and effective framework 
to create and use the services that are deployed into the Apricot platform. The referred 
agent task model is inherent to the Apricot agent model. It is a programming para-
digm that is derived from a model of how the Apricot agent processes information. It 
also defines how the services that they provide are constructed. The Apricot architec-
ture is presented in Fig 1. 

The Apricot architecture is very similar to Internet architecture and to the basic cli-
ent-server-model. Agent services act as servers, which provide the routing services, 
information repositories and network applications. The agent containers act as peers 
of the network, also providing different kinds of information services. The agent 
model provides the building blocks for realizing information services. The Apricot 
terminal is a window to this network and its services, such as a web browser, serve as 
a window to the World Wide Web.  

3.2   The Agent Service 

The Agent service is a server side component of the Apricot platform. It provides 
services to the network as follows: 

• Directory services: Yellow Pages, and White Pages. 
• Application deployment services: Application/Service upload and removal. 
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• Message routing services: A routing table for connected agent services and agent 
containers. 

• System Database Services: access to vocabulary, task, profile and midlet resources. 
• Authentication services: Access control for system resources and user identifica-

tion. 

The Directory Services implementation follows the FIPA Abstract Architecture 
specification [17] by providing the core services defined for the agent platform. How-
ever, in the Apricot platform these services have been extended with additional fea-
tures. These features enable the platform to perform basic presence services [23] so 
that the developer can create different kinds of services that use the presence frame-
work. Another noteworthy feature of these directory services is the Apricot platforms 
core feature, which provides support for dynamic adaptation of new services. A high-
level overview of the structure of the Apricot agent service is presented in Fig 2. 
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Fig. 2. The Apricot Agent Service 

3.3   Apricot Agent Container  

The Apricot agent container is a lightweight version of the Apricot agent service. It is 
an application container that provides the application and service deployment/removal 

Apricot Platform

WAN/LAN

Agent Service
N

Apricot
Terminal

Agent Container
N

Internet
HTTP/Socket

HTTP/Socket

HTTP/Socket HTTP/Socket

HTTP/Socket Front End

Service 
Locator

Service Discovery

Transport Layer

Presence 
Service

Presence 
Directory

Service
Directory

Application Pool

Personal
Agent N

Personal
Agent N

Personal
Agent N

Service
Agent N

Service
Agent N

Service
Agent N

HTTP/Socket Front End

Transport Layer

Application Pool

Personal
Agent N

Personal
Agent N

Personal
Agent N

Service
Agent N

Service
Agent N

Service
Agent N

Fig. 1. The Apricot Architecture 



70      Petteri Alahuhta et al. 

functions. It is designed to be an application repository for support application/service 
distribution which gives the system scalability - the service network can be extended 
dynamically, robustness- the services can be duplicated and distributed around the 
network and processing power - a service can be a composite service where parts of it 
are distributed around the network. The Apricot agent container is presented in Fig 3. 
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Fig. 3. Apricot Agent Container 

Both the agent service and the agent container contain three layers, which are the 
same in both implementations (The HTTP/Socket front end, Application Pool and 
Transport Layer). These three components form functionality similar to a simplified 
EJB framework where there is a container component, which contains the Java beans, 
and the application part, which is implemented with Java beans. In the Apricot plat-
form, these two main components of the EJB paradigm correspond to the agent con-
tainer as the environment and Apricot agent as the Java bean. The major difference in 
these implementations can be found in the functional implementation of the devel-
oped application.  

3.4   The Apricot Agent 

According to the Java bean model, Apricot agent can be described as an entity bean, 
which describes the functionality most accurately. However, it is still not a compre-
hensive definition for an Apricot agent. The main difference comes from the design of 
the Apricot agent, which encloses the session bean functionality and also partially 
enfolds the functionalities of the message-driven object. This is due to the process-
like nature of the task instances. These tasks are run concurrently and they form the 
applications by themselves or they are sub-units of another application. The design of 
the apricot agent model, illustrated in Fig 4, has been influenced by the UNIX archi-
tecture, and the functional model in particular. 

The development of the Apricot agent model was guided by the goal to hide some 
of the peculiarities of the agent technology and to develop tools that ease the applica-
tion development for developers who are not familiar with agent technology. The 
outcome of this was the Apricot agent model, which uses the EJB model and leans on 
the task and process model of the UNIX architecture. The EJB model is used because 
of its design, which encapsulates and defines the entities and their capabilities from 
each other to form an easily manageable object model. The EJB model is extended in 
the Apricot agent model by introducing a task paradigm for the service and applica-
tion construction. These tasks are the building blocks of the different application. 
They conceal some of the agent-related concerns from the developer, such as the 
language, ontology, protocol and content language processing. This approach is simi-
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lar to what is described by Berger et al. [24]. They named these components generic 
service components. The comparison between the characteristics of Apricot agents 
and Java beans is presented in Table 1. 

Table 1. Comparison of the Features of an Apricot Agent and EJB Objects 

The Apricot Agent Corresponding EJB-Object 
1) Concurrent multiple service/skill task execution 
environment. 

- 

2) Static developer defined or dynamic service/skill 
composition. 

- 

3) Can act as a client and/or a server. - 
4) Provides an object view of data in the database. Entity Object 
5) Allows shared access from multiple users. Entity Object 
6) Identified by a unique key. Entity Object 
7) Can be long-lived Entity Object 
8) Is asynchronously invoked. Message-Driven Object 

3.5   The Apricot Service Model  

The Apricot platform is an environment for developing and deploying heterogeneous 
services into the IP network. These services are consumed by the end user via his 
personal agent, which acts as an interface to the service network composed of hetero-
geneous service agents. 

The Web Services model is used and extended in the service discovery and the 
consumption of the discovered services. The personal agents adapt themselves to the 
service, which is described using the RDF format [25]. These descriptions are pub-
lished in and queried from the Yellow Pages service. These service descriptions con-
tain information about the service itself, service provider, service location, language, 
protocol, ontology, the location and names of the Java classes that implement the 
functionality, and also the names of the Midlet UI classes and their locations. 
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According to the service descriptions, the personal agent loads the Java classes and 
starts using the service accordingly. These service descriptions made in RDF format 
remotely follow the Semantic Web [26] approach where the research focus is on de-
scribing the web resources and pages to enable the use of the web content by com-
puters. The service usage is presented in Fig 5. The figure describes the sequence of 
events in an example scenario where Mike’s personal agent has already adapted itself 
to a news service and is now providing the service for him. 
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Fig. 5. Apricot Service Usage Model 

The EJB framework was used here to illustrate the similarities between the designs 
of these two systems and to give a solid cornerstone for comparison of the Apricot 
platform. The motivation to create an Apricot system came from the mobile world 
where the mobile users needed to be served with services that have some degree of 
personalization and context awareness. The common Personal Agent (PA) model was 
the most suitable for this scenario. However, this scenario posed a handful of design 
issues that had to be solved accordingly.  

1. The system should be able to facilitate a large number of PA’s.  
2. This should be done in a manner in which the maintenance would not become an 

issue.  
3. The PA’s should be able to adapt new services dynamically.  
4. How the services should be designed so that they could be dynamically adaptable.  
5. How the terminal represents the new services adopted by PA’s and how they are 

consumed by the end user.  

The first two issues of the PA paradigm will not pose a problem for the EJB imple-
mentation, but the last three are somewhat out of the scope of the EJB intended appli-
cation area. 
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4   Implementation of Mobile Applications   
Using Apricot Agent Platform 

This section briefly describes the demonstrators built on the Apricot platform. The 
original assumption was that using Apricot Agent Platform would make the develop-
ment of multi-user applications and services easier and faster that without the help of 
such tools.  

The demonstrators have been realized to validate features in the platform that sup-
port person-to-person communication, community communication, content manage-
ment and multi-agent coordinated tasks. Moreover, these demonstrators aim to prove 
that development of mobile services using the Apricot platform is relatively easy and 
fast and, furthermore, take advantage of the capabilities of the agents. These demon-
strators were built in a short time by exploiting the features provided by Apricot 
Agent Platform.  

The descriptions of demonstrators introduce the main features and advantages of 
each application. The four demonstrators are Mobile Instant Messenger, Mobile Car 
Salesman, Location- and user preference-based messaging application and Service 
Viewer. 

4.1   Mobile Instant Messenger 

The Apricot Mobile Instant Messenger (IM) is a demonstrator built on Apricot Agent 
Platform. The main purpose of building the demonstrator was to test the basic features 
of the platform. These features include content sharing, networking, management of 
personal agents and communication between personal agents.  

The main features of Mobile Instant Messenger are:  

• Private instant messaging between different registered users. 
• Public chatting between registered users of the chat channels. 
• Management of different chat channels. 
• Sharing of textual content within a community. 

The functionality of the demonstrator can be realized using existing technology like 
Short Message Service (SMS), which might have been an even more robust means of 
realizing previously-mentioned functionality. There are also other instant messaging 
services available for mobile terminals e.g. in [27]. However, the purpose of realizing 
the instant messaging service using Apricot Agent Platform was to assess the viability 
of the platform. The communication concept of the mobile instant messenger demon-
strator has been illustrated in Fig 6.  

Mobile instant messenger clients were implemented in a Symbian environment on 
a Nokia 6600 mobile phone. In figure 6, the messenger clients can be considered to be 
the users called Lisa, Mike, Pekka and Joe. The terminal client was implemented 
using Java Mobile MIDP version 2.0. Networking was done over GPRS connections.  

Mobile Instant Messenger was implemented in a couple of weeks by a programmer 
who was not involved in the development of the platform. During the course of de-
veloping the demonstrator, the Apricot platform proved to be a useful tool for realiz-
ing this kind of mobile service. Despite the claim of usefulness of the platform, it 
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must be stated that an alternative implementation was not realized. Therefore, we can 
only assume that when using an Apricot platform the implementation was effective, 
since the platform takes care of basic mobile service routines such as networking and 
message routing. 
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Fig. 6. Components of Mobile Instant Messenger Demonstrators 

4.2   Mobile Car Salesman Application 

The Mobile Car Salesman application was built up to prove the reusability and flexi-
bility of services and applications previously implemented on top of an Apricot plat-
form. The Apricot Instant Messenger application existed at the time the design and 
implementation of the Car Salesman-demonstrator was started. The other point of 
interest was the next generation mobile services, in which there will be a high level of 
interactivity in B2C markets. In particular, mobile marketing is a growing area of 
business and the demand for user-friendly, flexible mobile service development tools 
will grow. 

Dealer end features of the Mobile Car Salesman application are: 

• A duplex communication channel between the dealer and customers for customer 
approved conversation initiation. 

• A view of users’ requirements for the car 
• A way for the dealer to update the cars-for-sale information. 
• A channel for sending advertisements. 

Customer end features: 

• Browsing through the list of cars for sale. 
• Update the watcher’s information concerning requirements for cars. 
• Modifying the alert routines and channels. 
• Browsing and responding to received advertisements. 

All communication in this application was built on the existing instant messenger 
(IM) software. This application uses the IM software for carrying the messages con-
currently while the other user uses the IM for its original purpose. The development 
time used on the Car Salesman application was reduced due to the high reusability of 
the existing IM software.  

This experiment does not give an accurate result regarding how flexible the plat-
form actually is or what the actual reduction of development time is. However, it 
states the benefits of developing new applications on top of others. It also proves that 



Apricot Agent Platform for User-Friendly Mobile Service Development      75 

the platform design supports the expandability of the applications as planned. This 
feature also raises questions on what will happen if the underlying application is up-
dated. This kind of situation is handled by the Apricot platform if the Apricot agent 
design guides have been followed during the implementation of application.  

The Apricot platform has a built-in feature, which automatically updates those cli-
ents that are trying to use the recently updated service. This update operation is done 
dynamically and does not require any manual work by the system administrator. The 
update sequence is in fact almost the same procedure as the service adaptation done 
by the Apricot Agent when they adapt a service for the first time.  

4.3   Location- and User Preference-Based Messaging Application 

An application for context-aware messaging was built to test and demonstrate the 
possibility of combining the Apricot platform and a reactive, event-driven control 
system in order to achieve a reliable and fast compound system. The basic idea was to 
design robust control architecture for context-based applications such as context-
sensitive message delivery. For instance, context-sensitive message delivery can be 
used for location-dependent communication between family members or workmates.  

In order to enhance the reliability and robustness of the system depicted, a two-
level architecture has been developed. The system is distributed into intelligent and 
reactive domains. In the intelligent domain, the Apricot platform is used for high-
level reasoning. In the reactive domain, independent state machines are used for mes-
sage delivery. 

The reactive level components of the system are independent state machines capa-
ble of using contextual information during their execution. Reconfigurable state ma-
chines are constructed on–the-fly from RDF-based State Machine Markup Language 
descriptions [28]. The reactive system is used for delivering messages based on the 
contextual information, such as location information from a Position and Navigation 
System (PANS). Messages are received via an IMAP4-compliant email server and 
presented with the terminal device most suitable for the user’s current context. Com-
munication between the components is arranged through a simple CORBA-based 
interface called Property Service, also introduced in [28].  

Apricot platform agents are used for controlling and configuring the reactive sys-
tem. The intelligent agent acquires contextual information to make high-level control 
decisions. Based on the decisions, the agent configures the reactive components by 
supplying new SMML-descriptions for the state machines. In the actual implementa-
tion depicted in Fig 7, decision-making is made by the user via the agent's configura-
tion interface. 

The intelligent and reactive domains can be physically separated into a logical sys-
tem, where reactive components are executed in-house and intelligence is provided by 
an external party. Loose cohesion between the intelligent and reactive domains en-
ables continuous system functionality even during network disruptions. The idea of 
using an agent system to control self-reliant applications is thus applicable. 

4.4   Service Viewer 

A Service Viewer application evaluates the support of Apricot platform in the adapta-
tion of mobile services in the user’s mobile terminals. In this application, the user’s 
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personal agent (PA) dynamically adapts the terminal user interface according to the 
variable services. The Service Viewer has mechanisms to deliver the services built in 
the Apricot network (E.g. Instant Messenger, Mobile Car Salesman, etc.) to the users 
of these services. Service descriptions define the appearance of services in terminal. 
The Viewer also provides the user with an execution frame for the GUIs and the de-
livered information. 

The Apricot terminal deals with this problem by regenerating the terminal applica-
tion-midlet every time the user wants to start using a new service provided by the 
Apricot network. This regeneration is supervised and carried out by the users PA, 
which knows the current composition of the user’s terminal. It also receives the in-
formation about services the user would like to use. According to this information, it 
prepares and delivers a new Service-midlet into the user’s mobile phone.  

This approach to implementation of the terminal-application gives the service de-
veloper the opportunity to freely and independently design the service GUI’s and their 
functionalities. This is not the case, for example, if the developer is using a terminal 
platform that uses some UI description language, such as the user interface markup 
language (UIML) or extensible user interface language (XUL). Despite the benefits in 
the Apricot terminal application, there are also drawbacks. The main drawback is that 
the use of the service viewer requires a lot of bandwidth, because the terminal soft-
ware easily grows to more than 1mb in size. Most likely it will continue to grow even 
larger. Another problem we encountered was the unstable implementation of the Java 
Over the Air (OTA) specification by some mobile terminal manufacturers. A lot of 
features specified in the OTA specification were missing from the mobile phone im-
plementations. Due to this problem, there are no guarantees that the software devel-
oped for one Java MIDP 2.0 enabled mobile phone will work in another. Furthermore, 
there are even fewer guarantees of compatibility between software and the program 
code in the actual mobile phone. This problem will probably diminish over time as the 
implementations of the OTA specification get better. 
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5   Conclusions 

The vision behind this research was the requirement to assist the use of mobile ser-
vices by integrating several services in a way that is convenient and transparent for 
the user. Our research approached the solution step by step, first by developing tech-
nology enablers for mobile service providers and secondly by making demonstrators, 
the aim of which is to solve the usability and availability problems of mobile services. 
As our work continues, we will be able to produce user-friendly mobile services with 
the help of Apricot platform. 

This paper has shown how agent-based systems can be used for developing soft-
ware systems, particularly for producing user-friendly mobile services. We also show 
how Apricot Agent Platform facilitates the implementation work of mobile services 
by providing an agent platform and agent frames with basic functionality. We have 
built several demonstrators for evaluation purposes of Apricot platform, we have used 
less hours for building up the demonstrators than ever before for producing mobile 
services.  

We have been able to show that Apricot system provides an easy way to produce 
mobile services, since the agents have basic features already built-in, such as func-
tionality and communication mechanism. In other words, agents can be considered 
partially reusable software components. 

As the tendency for mobility grows all the time, we have also introduced a light-
weight version of the Apricot platform. Apricot Agents are able to provide an inter-
face on mobile phones with Java Virtual Machine support. In the demonstrators, so 
called Smart Phones-type mobile phones were used as they provide relatively good 
processing power as well as memory capacity. We believe that it would also be possi-
ble to implement Apricot systems in mobile environments with more limited re-
sources; however, this kind of test was not carried out during the experiments de-
scribed in this paper. 

These results of Apricot research can be extended in a number of directions. We 
have two major targets for development: to further develop Apricot platform to fully 
rise to the challenge set by the mobile environment and to develop Apricot-supported 
applications for real business cases to benefit users. Technically, the development of 
the platform has to improve usability, stability and performance in order to test it in 
real-life business cases.  
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Abstract. Ubiquitous systems will integrate computers invisibly and
unobtrusively in everyday objects. Information will appear in new forms,
i.e. data will be catched from single or multi-sensor devices and will be
used for context extraction. New location-based services will be adapted
to user preferences. For this the ubiquitous system needs to know user
profiles, likings, and habits. As the user moves these information have
to be sent to the new location of the user. Either the user carries her
data on wearable or portable computers or the ubiquitous environment
takes responsibility for transporting them. The amount of new devices
and services makes an efficient use by centralized systems very difficult.

The idea presented in this paper is that a virtual reflection of the user
represented by a mobile agent accompanies her in the ubiquitous en-
vironment. Mobile agents offer a possibility to encapsulate information
of a person and her preferences and perform location-based services of
the ubiquitous system in the name of the user. Because of the personal
data security and privacy are major concerns of such an agent system.
This paper describes a ubiquitous mobile agent system named UbiMAS
which has security extensions to provide high protection of agents and
significant personal data. UbiMAS is used in a smart office environment
with smart doorplates.

1 Introduction

Future computers will be integrated in objects of everyday life. The user shouldn’t
perceive these computers in his familiar environment. Ubiquitous systems should
be invisible and unobtrusive. A further fundamental feature is their knowledge
of context information. Context is the situation arising by realization and inter-
pretation of environmental information. Single or multi-sensor boards [14] are
developed to be used in smaller and more powerful intelligent environments.
These devices can build a sensor-network and communicate with each other
over wireless media. To include the location of a person into the context infor-
mation different location-tracking systems can be used [5]. Additionally personal
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information like profiles, preferences, likings, and habits are indispensable. Ubiq-
uitous systems can use this data to adapt to the respective situation and react
to changes without active user interventions. In case of location changes of the
person the personal information has to be sent to the current location. The Mo-
bile Computing field provides here various computing devices, like Tablet PCs,
PDAs, notebooks, or even wearables. The person could carry portable devices to
store these information. These devices are usually dedicated to a single person,
so that security and privacy issues are on responsibility of the user. The disad-
vantage of these devices is that they need to be carried always by the person
who owns them. The power consumption of wearable devices is an additional
problem. It can lead to a loss of availability. Often it is inconvenient for users to
carry such devices and users are inclined to forget the devices in their offices or
at home.

We propose in this paper that the ubiquitous environment takes care for
storing and sending the personal information. The person is always accompanied
by a mobile virtual object in the ubiquitous environment. So location-based
services adapted to personal profiles can be offered. Certainly the ubiquitous
system could be realized as a server-centric approach. But concerning personal
movements and data this would lead to a big-brother-is-watching-you scenario
where entities that gain access to the server would have access to all personal
information. Regarding ubiquitous environments a central server could rapidly
become a bottleneck because of the amount of clients and services running on
the system. Moreover, a failure on the server would endanger the whole system.

The paradigm of mobile agents ideally fits into the decentralized approach.
The mobile agent constitutes a virtual reflection of the user and carries personal
information which enables the agent to perform various services for the user.
Additionally the mobile agent can use the environmental information which is
provided by the local ubiquitous system. Personal context of users need to be
secured on foreign nodes to anticipate spying out personal data. Therefore se-
curity is an essential factor for the acceptance of ubiquitous mobile agents. This
paper describes an ubiquitous mobile agent system called UbiMAS [1] with new
communication and security extensions. The agent system is applied in an of-
fice building where electronic doorplates offer flexible office services. Mobile user
agents accompany the person who is tracked by a location tracking system and
can instruct service agents to perform tasks for the user. We implemented three
applications using UbiMAS: a direction scenario where a visitor is navigated
with arrows displayed on electronic doorplates, an e-mail application where an
employee can assign her user agent to inform her about expected e-mails at each
doorplate in the office building, and a file access application where the employee
can securely read or download files which are placed on a PC where she has
read access. The next section deals with related work. The subsequent section
describes the idea of reflective agents in the Smart Doorplate project [2] and
explains the system architecture of UbiMAS with its communication and secu-
rity extensions. Section 4 presents some applications and evaluation results. The
paper ends with the conclusion.
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2 Related Work

Several research projects exist for smart office and home environments. The Ac-
tive Badge system described in [19] is an IR-based location tracking system.
It is used in an office scenario, where phone calls are redirected to the current
location of the user. The Aware Home project [11] aims to built a ubiquitous
house to create a living laboratory for research in ubiquitous computing for ev-
eryday activities. Using various sensors new applications are implemented like
the identification of person over a Smart Floor or finding Frequently Lost Ob-
jects (FLO). Mozer [13] proposes an Adaptive Control of Home Environments
(ACHE). ACHE monitors the environment, observes the actions taken by in-
habitants, and attempts to predict their next actions. All of these projects are
one-server-centric. We chose with our reflective mobile agents a distributed ap-
proach obviating central point storage of information.

The idea of using mobile agents in ubiquitous environments appears in sev-
eral projects. In [9] a flexible mobile code approach is described which is used
in a ubiquitous and active augmented reality system. The user inspects the
world through this AR system and is tracked by a location-tracking system.
When she enters a space of a real object which has an active tag, a mobile code
is downloaded on the user’s device and is executed by a Mobile Code Engine
(MCE). The mobile code contains executable information, e.g. appropriate user
interfaces, but it is not a mobile agent system because the mobile code isn’t
autonomously performing a service.

The Hive system [12] is a distributed agent platform for building applica-
tions by networking local system resources. Agents are used to control devices in
ubiquitous computing environments. Hive also supports agent migration. How-
ever the agents here are simply remote objects, e.g. buttons, without an agent
communication infrastructure.

[16] and [17] describe a framework which is very similar to our approach. The
framework provides a way for mobile agents to follow their users as they move
around and to adhere to places as virtual post-its. However the papers describe
only a framework and shift the security issues to the used agent system and the
Java Virtual Machine.

Security in mobile agent systems is examined in multiple research projects.
[3] describes a security concept where mobile agents only migrate to trustful
nodes. [15] replaces the concept of trust by a concept of reputation. Agents can
increase or decrease the reputation of nodes dependent on the experiences that
they make with the nodes. To protect against occupation of node resources by
agents [10] defines a restriction on the number of times an object can be accessed.
These projects influenced our security approach which more specifically targets
the requirements of ubiquitous environments.

3 Reflective Agents on Smart Doorplates

Reflective agents accompany persons in the ubiquitous environment and carry
user specific data. In order to examine this idea in a real scenario we mounted
touch screens at each door of an office building replacing fixed doorplates. These



82 Faruk Bagci et al.

Smart Doorplates [2] offer a platform for several services. Users of the services
are employees, i.e. the office owner, and visitors of the building. Employees have
their personal reflective agent, which resides in the environment and contains
data about the employee. The data consists of basic user information like name,
office room, etc. and security data like private and public keys, user names
and passwords of the owner used for communication, data security, and access
operations. Furthermore the agent stores context information belonging to the
user and updates these data automatically.

The doorplates serve also as interface between user and agent. The user
can instruct her reflective agent to perform services in her name. The reflective
agent communicates with service agents and passes on the instructions. If the
user moves to a new location the reflective agent migrates to the doorplate next
to the user. The user location is determined by an RFID tracking system. The
user must only carry an RFID tag.

This mobile agent model is implemented in UbiMAS. The UbiMAS architec-
ture is described in the following subsection.

3.1 UbiMAS Architecture

The ubiquitous mobile agent system UbiMAS is implemented as a service run-
ning on top of middleware systems. Currently, UbiMAS is based on the Auto-
nomic Middleware for Ubiquitous eNvironments named AMUN [18]. UbiMAS
services run on top of AMUN besides other services like a location tracking
service.

AMUN is designed with the goal in mind to foster the device independent
application of autonomic computing demands proposed by IBM in ubiquitous en-
vironments [7]. AMUN uses the peer-to-peer system JXTA [8] as communication
infrastructure. Communication in JXTA is realized by three kinds of pipes: prop-
agate, input and output pipes. If two JXTA peers want to exchange messages
directly they arrange input and output pipes for unlimited and bidirectional
communication. AMUN uses an event-based approach for message delivery. It
offers services the interfaces needed to exchange messages over middleware pipes.
Each service defines its own message type. When a message arrives AMUN an-
alyzes the message type and generates an event for the registered services. An
Event Dispatcher offers services the functionality to send messages and to reg-
ister themselves as listeners to specified types of messages. In this manner the
services can register for different message types and get informed when one of
these messages arrive. So each application decides if it wants to receive sensor,
location, middleware or other kinds of messages. UbiMAS defines an own mes-
sage type. UbiMAS nodes that are implemented as AMUN services register for
this UbiMAS message type.

UbiMAS consists of two parts: the UbiMAS basic platform and the UbiMAS
extensions. The UbiMAS basic platform defines abstract agent nodes and the in-
terface for agent implementations. It realizes the basic communication functions
between nodes and agents and several security concepts.

The UbiMAS extensions part implements the application specific compo-
nents, i.e. the reflective user agents and the service agents. Furthermore the
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communication functions are extended here with secure agent-agent and agent-
node methods to fulfill the requirements of the Smart Doorplate application.

This separation in a basic and an extensions part makes a broad usage of
UbiMAS possible.

3.2 The UbiMAS Node Service

To host UbiMAS agents each peer has to start at least one UbiMAS agent node
as service on top of the middleware (see Figure 1).

UbiMAS implements additional communication protocols for agent and node
communication and for agent migration. All messages are acknowledged in Ubi-
MAS what is not implemented by the base middleware.

If a middleware peer receives a UbiMAS type message it informs the node
sending an event on which the node listens. UbiMAS nodes implement a Mes-
sage Delivery component which receives the events sent by the middleware and
processes the incoming messages. If the node wants to send a message it forwards
it to the Message Delivery where the appropriate header information are set.

If the receiver of a message is an agent the Message Delivery hands it on
to the PoBox. The PoBox has for each agent an interface called PoBoxAdder
where the agents can send and receive messages. This is the only connection of

Fig. 1. UbiMAS on top of AMUN.
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an agent to a node. All communication between agents and nodes is handled
over the PoBox using the PoBoxAdder. The PoBoxAdder describes the interface
for putting messages into the queues. Besides the addMessage method of the
PoBoxAdder there are no method references between nodes and agents.

The PoBox installs for each agent a queue for incoming messages. In the
same manner each agent has a queue for messages sent by the PoBox. The queue
lengths are managed dynamically by the possessing entity. This approach offers
various security features which are described in the UbiMAS security section
below.

3.3 Agent Node Peer Groups

The agent nodes can form alliances in form of peer groups independent from the
middleware peer groups. If two peers want to build a peer group they have to
arrange new pipes which are built using a pipe advertisement. The advertisement
contains a unique pipe ID. Only the peers which know this ID can receive the
messages sent over this pipe. Figure 2 shows an example for UbiMAS peer groups.
Each agent node which wants to join a peer group must send a request. The peer
group members can decide if this request will be accepted or rejected. Inside of a
peer group the agent nodes communicate over a secure communication protocol.
Messages to foreign nodes outside the peer group are still possible but are not
secured.

Different peer groups can build a partnership. Applied to an office building
each floor could build a peer group, and floors of the same institution could
form an alliance. This makes it possible for agent nodes to communicate with
nodes from other peer groups. Besides UbiMAS there are other services, e.g.
Location Services, using the same middleware for communication. Mobile Agents
can register for events of these services and will be informed when new events
occur. In this way agents can be notified by sensor events from the environment
or location events of particular persons.

3.4 UbiMAS Mobile Agents

Agents in UbiMAS are started as single threads on the actual node. An agent
reacts to messages, i.e. the agent is in a loop where it waits for incoming mes-
sages. A UbiMAS node can host several agents. There are two types of agents in
UbiMAS: user-agents and service-agents. Both agent types descend from an ab-
stract agent that defines different basic methods for communication and security
functions.

Agents can communicate with each other using messages. An agent must
implement functions which are performed when a specific message is received.
If an agent doesn’t know the message type it ignores the message. The abstract
agent defines methods for creating and sending messages. The agent nodes serve
here as mediators. Messages addressed to a local available mobile agent are
forwarded directly to the recipient agent by the local PoBox. If the agent is on
another node the message is transferred first to this node.
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Fig. 2. UbiMAS Peer Group Example.

Each agent is identified over a unique ID. UbiMAS supports message en-
cryption. Each node owns a certificate, a public and a private key. Each agent
has an own key pair for message encryption. The abstract agent defines further
data structures for security keys of the agent and the public key of the actual
host. Furthermore there are methods for requesting public keys of other agents
or nodes.

Below are some methods of the abstract agent described. To send a message
an agent performs:

– createAgentMessage is called by an agent when it wants to send a new
message. It returns an prepared UbiMAS message where the ID of the calling
agent is set into the sender information by the PoBoxAdder.

– encodeAgentMessage: The agent can encode the contents of the message
using the coding methods RSA or DES. As key the agent uses the public
key of the receiver agent or node.

– sendToAgent and sentToHost are called by an agent when it wants to send
a message to another agent or to a node. The PoBoxAdder puts the message
into the queue of the PoBox.

Moreover if an agent receives a new message the following methods are called:

– addMessage: The PoBoxAdder calls this method to put a message into the
queue of an agent.

– decodeAgentMessage: If the message is encoded the agent can decode the
contents of the message with his private key.

For migration the agent calls:

– sendAgent: If an agent wants to migrate to another host it calls this method.
The agent code is serialized and packed as a byte stream into a message and
is sent to the PoBox. The PoBox sends the message to the receiver node and
destroys the agent after receiving an acknowledgement.
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Extending this abstract agent we implemented a user-agent that can receive
location messages concerning its user and migrate to the node next to this lo-
cation. The user-agent can get instructions and data over a GUI directly from
the user and can ask for service-agents assigning them to perform a specific ser-
vice. There are three service-agents implemented. The last section describes the
service-agents and the application scenarios in detail.

3.5 UbiMAS Security

The security architecture of UbiMAS aims to protect both the agents and nodes
against malicious behaviors. A secure system is essential for the acceptance of
the reflective mobile agent approach because personal data is sensitive [6]. In [4]
the author defines four security issues specific to mobile agent systems. These
are:

– protection of the host against agents,
– protection of agents against other agents,
– protection of agents against host, and
– protection of the underlying network.

Each involved entity of the mobile agent system can be regarded as a poten-
tial intruder. Malicious agents could be used to forward confidential information
or to attack other entities. Nodes have full access to the agent code and therefore
could clone agents, manipulate the migration path or attack the host PCs. The
host PCs and the communication network offer a broad basis for attacks on the
agent communication and migration. There are other entities who could endan-
ger the agent system, like administrators, authors, owners, and agent users. The
administrator installs, configures, and maintains the mobile agent system. He
could arbitrarily manipulate the system. The author develops the mobile agents
and could build a Trojan horse or hidden functions. In some cases the owner and
the user of mobile agents are different persons. The owner describes the person
who feeds the system with agents. He could consciously bring malicious agents
into the system. The user can’t bring new agents into the system but utilizes
the agents and could apply many agents trying to start a Denial-of-Service at-
tack. To stem the potential attacks UbiMAS realizes various security approaches
which are described below.

Protection of Agents Against Hosts: UbiMAS assumes only trustful nodes.
The nodes are installed by an administrator. We assume here social protection
mechanisms. The administrator and author of the agent nodes are known. It is
supposed that these persons will act trustful in their own interest. Infiltration
of foreign nodes is not possible because of certificates and keys for each service.
Furthermore only UbiMAS peers of the same application can form a peer group.
Each peer group has its own certificate which is validated during communica-
tion. All messages in UbiMAS are coded using Public Key Infrastructure (PKI)
approaches. If the sender node doesn’t know the public key of the receiver it first
asks for it and stores it for future communication. The main point therefore is
to protect the agent node and agents against malicious mobile agents.
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Protection of Agents and Hosts Against Rogue Agents: The first step in
this direction is to secure the message exchange between agents and nodes. Our
solution is the PoBoxAdder which has several protection functionalities. Pro-
tection against impersonating is realized through the property that the sender
of messages isn’t set by the agent but by the PoBoxAdder. This means that
an agent can’t describe as another agent. Furthermore the PoBox has a limited
queue for messages. The node can change the length of each queue dynami-
cally. Agents can only send until the queue is full. Besides this the node can
set a timer. The agents have to wait until the timer is expired before they can
send a new message. The messages of all different PoBox queues are served by
a fair scheduling algorithm, e.g. FIFO. This makes denial of service attacks by
agents against nodes more difficult. In the case of an attack the node can set the
queue-length of the concerning agent to zero blocking further sendings.

One more protection approach results by avoidance of references. This means
that no mobile agent knows direct references on the node or other agents, i.e. the
agent can’t call external functions or access external data. The only interface for
communication is the PoBoxAdder. Each agent reaching the actual node gets the
public key of this node. All messages which the agent sends to the PoBoxAdder
are coded with the public key of the node. In the same way the node codes
messages to an agent with its public key. So even if an other agent gets this
messages it has no possibility to decode the information. With this approach
UbiMAS can allow all kinds of agents, even malicious ones.

To provide platform independence UbiMAS is implemented in Java. To exe-
cute an agent the node has to know its class. The agent usually migrates with its
class. The node has the responsibility for securing that the agent code won’t be
manipulated during migration. This is done by encryption. However, here a se-
curity gap may arise because agents could be started with the wrong class which
have the same name as the agent class. UbiMAS ensures that mobile agents are
always loaded with the right class. If the class isn’t known the node requests it
from the sender node. Since in UbiMAS there is no limitation for agents and
agent authors it is impossible to avoid name conflicts through a name conven-
tion. To avoid name collisions each agent has its own class loader. This enables
separation of name spaces. Since generic classes could be loaded redundantly we
differentiate between standard and non-standard agent classes. The agent node
implements a standard class loader that loads the communication classes. Re-
maining agent-specific classes are loaded by the agent class loader. In that way
the communication classes are loaded only once on the node.

UbiMAS disallows cloning of agents. All user-agents are loaded only once per
person. During migration the nodes observe that the agents are deleted after
acknowledged transfer. The same service-agent can be loaded several times but
each agent becomes its own unique ID, so there are no clones of service-agents,
too.

In our office scenario service-agents are allowed to access resources on hosts.
This access needs to be secured. This is done using the Security Manager of Java.
The problem here is that the Security Manager protects the system only against
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applications. However mobile agents are not applications but implemented as
threads. If the Security Manager would give permissions to an agent as appli-
cation all agents on this node would get the same access. This is naturally not
acceptable. What we need here is a permission system for single threads. The
problem on threads is that the thread ID changes after agent migration, be-
cause each node starts a new thread for each received agent. To guarantee that
only a specific agent gets the access rights on chosen resources it needs an ac-
cess approach based on a unique identification technique independent from the
thread ID. UbiMAS realizes a security extension of the Java Security Manager
where rights on system resources can be applied for agent threads. The Security
Manager requires several attributes like username, password, permission name,
permission parameters, and a permission ID. To ensure that this permission ID
is unique it is calculated using the agent ID and is decoded using public/private
key mechanisms. Therefore the calculated ID is independent from the thread ID
and is unique because all agent IDs are unique.

Besides the nodes the agents have their own private/public keys. To secure
the message exchange the agents can encrypt the information in the messages
with the public key of the receiver agent or node which subsequently decrypts
it with its private key. Furthermore agents always store encrypted personal data
of its user. There is no possibility to access this data because the only access to
agents is by messages over the PoBox.

If an agent wants to migrate to another node it asks the node to send the
agent to the destination. There are two methods for migration. The agent can
ask for transfer directly to a node or it can ask for transfer to the node where
a specific agent resides. For the second method the actual node may start a
finding procedure for the destination agent. In both cases the agent that wants
to be transferred waits for migration by sleeping. In that time the agent can still
receive messages. The sender node tries to build a bidirectional connection to the
receiver node. If this was possible, the node begins with transfer preparations.
The node also uses private/public key encryption for agent migration. It serializes
the agent code, uses the public key of the recipient node for encryption, and packs
it into a message. Additionally the messages received for the current agent are
attached to this message. The destination node realizes that the message has a
mobile agent type. It decrypts the message with its private key, deserializes the
agent, and wakes it up. After that the node delivers the messages to the agent
which were received in meantime.

4 Application Scenarios and Evaluation

To evaluate UbiMAS we have implemented several Smart Doorplate scenarios
and present here one user-agent scenario and three service-agent scenarios. For
each user (employee or visitor) exists a user-agent as reflective agent, which is
fed into the system when the person physically enters the building. The smart
doorplates offer an interface between user-agent and the user. If a user wants to
utilize a service, she stops in front of the next doorplate. The location tracking
system based on RFID recognizes the user and fires an event containing the
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user ID. The user-agent catches this event and migrates to this smart doorplate.
After authenticating herself the user can choose a service. If the user wants to
go to an office and don’t know the way she can ask her user-agent for navigating
her. The user-agent then displays arrows in the direction the user has to go.
Knowing the next doorplates the user will pass, the user-agent jumps ahead and
shows the right direction. If the user reaches the destination the agent displays
a reached message. Figure 3 shows a picture of one smart doorplate and figure
4 shows the floor of our institution with a smart doorplate at each door.

Fig. 3. Smart Doorplate.

Besides this scenario we have implemented three service-agents: an e-mail
agent, a file reader agent and a file fetcher agent. In the e-mail scenario an
employee uses her office PC to retrieve e-mails and can arrange to be notified
if she expects a special e-mail. Because of security reasons she doesn’t want to
receive all her incoming mails on a foreign smart doorplate. She instructs her
user-agent to check the e-mails appropriate to a special filter and to inform her
when matching e-mails were found. The user-agent calls an e-mail service-agent
and gives it the filter in coded form. At the same time it applies for the required
rights on the host PC for checking e-mails. The service-agent moves now to the
agent node on the host PC. There the host can validate the ID of the agent
and can set the rights, which were requested by the user-agent before. Now the
service-agent can search the received e-mails using the filter. If the agent finds
a matching e-mail it migrates to the node where the user-agent is and gives
the results to the user-agent. The file reader agent and the file fetcher agent
perform in the same way. The first one only reads out a file, e.g. a log-file which
the employee wants to see, and displays the contents on the doorplate. The file
fetcher agent brings a specific file to a desired doorplate and stores it into a
public folder.
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Fig. 4. Floor with Smart Doorplates.

The movement of the mobile agent should be faster than the movement of
the person. Usually the migration of the agent has some delay because the lo-
cation tracking system takes some time to recognize the person and to fire an
location event. In [1] we performed preliminary tests with Bluetooth and WLAN
connected PDAs which showed insufficient transfer performance already for the
basic system without encryption. As result, we based the doorplate system on
ethernet connected PCs. In order to evaluate UbiMAS with its security exten-
sions we measured the ping time (PT), i.e. the time an agent needs to jump
from a node to another and back on the PC-based system. We increased the
size of data carried by the mobile agent. The measurement is taken once with
encryption/decryption the agent code during migration and once without en-
cryption. Figure 5 describes the evaluation results. The results show that using
security encryption increases the agent transfer time. Encryting more agent data
needs more processing time. However the migration time is still acceptable for
the reflective agent scenario.

5 Conclusion

This paper presented the Ubiquitous Mobile Agent System UbiMAS. UbiMAS
grabs the idea that ubiquitous systems are responsible for storing personal user
data and sending them to the actual location of the person where the system
offers user specific services. This transfer of private information is the reason
why UbiMAS cares much for security aspects. Mobile agents carry user specific
information and perform services in the name of the person. It is essential that
agents and nodes are protected against malicious agents. For this UbiMAS of-
fers various security features. The PoBox is one of these used to ensure that no
agent has references to other agents or nodes. We described the UbiMAS node
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Fig. 5. Agent Ping Time with/without encryption.

peer infrastructure where new communication protocols are used for secure mes-
sage exchange between agents and nodes. We implemented different scenarios
for flexible office buildings with smart doorplates where we differentiated be-
tween user-agents and service-agents. The agent system bases on an autonomic
middleware which provides additional application possibilities for the agent sys-
tem. We currently explore how mobile agents can support the self-monitoring
and self-configuring features of the autonomic middleware system. UbiMAS is
designed in a generic way ensuring broad application possibilities.
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Abstract. In this paper a new architecture for learning action sequences
through imitation is proposed. Imitation occurs by means of observing
and applying sequences of basic behaviors. When an agent has observed
another agent and applied the observed action sequence later on, this
imitated action sequence can be seen as a meme. Agents that behave
similarly can therefore be grouped by their typical behavioral patterns.
This paper thus explores imitation from the view of memetic prolifera-
tion.
Combining imitation learning with meme theory we show by simulating
agent societies that with imitation significant performance improvements
can be achieved. The performance is quantified by using an entropy mea-
sure to qualitatively evaluating the emerging clusters.
Our approach is demonstrated by the example of a society of emotion
driven agents that imitate each other to reach pleasant emotional state.

1 Introduction

Much effort has already been put into the study of “imitation” ([2], [4], or [6]).
Yet, imitation has been studied so far mainly in terms of learning by demon-
stration, where the role of the teacher and the student, or demonstrator and
imitator, are fixed, e.g. a robot arm equipped with a computer and a camera
that has to learn the exact movement of a human arm playing tennis. However,
in many application fields these basic movements, also called basic behaviors,
are already known, and instead the proper sequence of these behaviors has to
be learnt. The information describing which action sequences improve the per-
formance can thus be seen as a crucial information entity that can possibly be
obtained by observing other agents. What can be learnt by observing others does
not have to be learnt with great efforts by oneself using trial and error.

When one subject copies an information unit from another one, the object
that is being transferred underlies several rules. Dawkins was the first one to
state that ideas or information units that can be transferred evolve according
to similar rules that govern biological evolution [9]. The Oxford English Dictio-
nary describes this information unit, called “meme” according to the biological
counterpart “gene”, as follows [1]:

meme, n. An element of a culture or system of behaviour that may be
considered to be passed from one individual to another by non-genetic
means, esp. imitation.

M. Beigl and P. Lukowicz (Eds.): ARCS 2005, LNCS 3432, pp. 93–107, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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This way, an action sequence or episode can also be seen as a meme that is
transferred from one agent to another at every observation. After a while, groups
of agents performing different action sequences should emerge, because different
agents will have observed different behavioral patterns at different times. The
more benefit a meme offers to the possible hosts the more it will be spread
following a survival of the fittest pattern. An action sequence in the general
sense is an output sequence that manipulates the environment.

In this paper a simulated environment is described in which agents perform
action sequences. These action sequences correspond to physical actions in the
real world. The agent’s perception is simulated also and is not a research topic
in this paper, which concentrates on imitation. The performance improvement
is measured by means of the agents’ utility functions. This is a heuristic com-
posed of emotions and drives, which are the driving force behind the agent’s
behavior. Our emphasis is on adapting this heuristic to solve technical problems
and not on the discussion about the real emotional model of human beings. Ev-
ery agent strives for feeling good emotions and avoiding bad ones. According
to Plutchik [15] emotions have the following important features: 1) Emotions
are aroused by external stimuli. 2) Emotions are directed towards those stim-
uli. 3) Emotions are aroused after the subject has perceived and interpreted the
stimulating object. 4) Emotions are volatile and decay over time.

Since their emotions are the consequence of external stimulation the agents
have to modify the cause for this stimulation – either by neutralizing the stim-
ulus in case it aroused bad feelings or by supporting it in the other case. To
accomplish this they have to find out and select the proper sequence of actions
or behaviors in their behavior repertoire that will be applied by the behavior
system. In our approach this selection is learned by the imitation system of an
agent which strives to imitate action sequences that have been observed with
other agents in the past and have been considered to be successful, meaning
that the agent felt better afterwards, as registered by its emotion system. Con-
trary to the established learning approaches this architecture does not contain
any sophisticated learning algorithm like e. g. Reinforcement Learning [18] or
evolutionary algorithms [19].

2 Related Work

Gatsoulis et al. show how foraging can be trained via learning through imita-
tion [13]. In their experiments they point out, that the imitator can generalize
beyond its training data. Billard looks at the imitation learning problem from the
biological point of view, when presenting a model for motor skills imitation [6].
The modules of this architecture correspond to brain regions responsible for the
control of movement in primates. Demiris and Hayes distinguish active and pas-
sive imitation [10] to handle the situation, in which the demonstrated action
is already known to the observer and that one, in which the observer has to
imitate completely new actions, differently. In the passive case, the motor sys-
tems are only involved during the reproduce phase in the perceive – recognize
– reproduce process, whereas in the active case the motor systems are involved
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throughout the whole process. This is necessary for the imitation architecture to
learn completely new actions for the first time. These two cases are combined in
their dual-route architecture. Schaal showed how demonstrated trajectories can
be described as sequences of action units that are formalized as stable nonlinear
attractor systems, called Dynamic Movement Primitives [16]. These research pa-
pers focus mainly on how individual behaviors of a demonstrator can be exactly
imitated. The problem how sequences of such behaviors can be imitated is not
addressed. Borenstein and Ruppin developed a framework called imitation en-
hanced evolution (IEE) to explore, how imitation can be utilized in evolutionary
processes of agent populations [11]. By leveraging the knowledge possessed by
members of the population they concentrate on the horizontal imitation (imi-
tation between members of the same generation) as opposed to the vertical or
cultural imitation. Thus, in IEE only innate behaviors can be imitated. It pre-
vents an imitated behavior from being imitated once more. Thereby, IEE does
not allow an exploration of meme dispersion. Moreover, the framework always
clearly constitutes who is the teacher in the society, which is taken randomly
but proportionally to fitness value. This contradicts to the aim of our work that
memes in the form of action sequences spread through imitation processes more
freely, in which the teacher is chosen by the memes themselves.

3 Architecture

Our imitation learning approach adapts the triple tower architecture [14] from
the robot head MEXI [12] and extends it with an imitation system that enables
agents to imitate each other. To achieve this it provides an interface by which
agents can read from other agents their executed action and emotional state.
The overall architecture has to perform the following tasks:

– Imitation System: Observe agents and apply previously observed episodes
appropriate for the improvement of the current emotional situation.

– Emotion System: Choose a behavior that should be applied if the imitation
system has no better episode to offer. The calculation of the behavior is
based only on the current emotional state.

– Behavior System: Map the chosen behavior to more detailed action instruc-
tions (e. g. Behavior X → “turn 10°, move forward 5mm, open gripper”).

Combining these three systems imitation system, emotion system, and behavior
system the architecture is designed as shown in Fig. 1.

In this data flow graph the perception module delivers the data directly to
every system in the middle tower. Thus, all these systems work on the same data
basis and no perception filtering between them is applied.

Using the perception data the emotion system consisting of emotions and
drives, which will be described in detail later on, calculates which action should
be executed so that every emotion will be perceived affirmatively as an effect.
Together with its action choice it delivers the current emotional state to the im-
itation system. The imitation system evaluates the emotional state and switches
into one of three modes, which are represented by according behaviors in the
behavior system:
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Fig. 1. The agent’s model. The emotion module gives hints about which actions should
be favored. But, the imitation module has the right to veto if the agent has observed
in the past an action sequence that could be better for the agent’s actual emotional
state.

OBSERVE: Look at the nearest agent and record its emotional state together
with the executed action for a similar situation in the future, where it might
be applied.

APPLY: Find in the episode memory an episode which matches the current
situation and execute it.

OTHERWISE: Perform some random action like e. g. foraging.

In the OBSERVE and APPLY mode the action selection by the emotion system
has no influence. The behavior system is entirely controlled by the imitation
system. In the mode OTHERWISE, the emotion system takes over the control.
If the imitation system has decided which action to execute it forwards this
choice to the behavior system which has the task to transform it into a set of
detailed action commands that can be passed to the actuators. Arkin showed
how this can be straightforwardly accomplished using Motor Schemes [3].

The behavior, emotion, and imitation system will now be described in more
detail using an example application for illustrating and evaluating the concepts:
A two-dimensional simulation environment has been set up, in which ten agents
are simulated for 10,000 time steps per simulation run, with the aim to feel good
emotions and avoid bad ones. To achieve this they have to collect flags which
are distributed over the whole simulation field and carry them to one of four
bins which are located in the corners of the field. The agents dispose of a gripper
which they can open, close or put into trigger mode, i. e. it is open until the
agent has moved onto a flag. Furthermore, they can move in every direction.

3.1 The Behavior System

The task of the behavior system is to translate the abstract behaviors into more
detailed atomic actions that can be executed by it’s actuators: the motor and
the gripper. To the emotion and imitation system it offers a repertoire of ten
complex behaviors. The behavior repertoire can be grouped into two different
behavior classes: normal behaviors and imitation behaviors, which are triggered
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only on behalf of the imitation system. All behaviors are modeled using the Mo-
tor Schemes architecture enhanced by application specific utility functions like
usage of the gripper or using the imitation interface. Using Motor Schemes sim-
plifies the behavior system to a high degree: Given a two-dimensional field with
obstacles O1 . . . On and one goal G, the Motor Schemes approach calculates a
vector field for the agent that shows the agent the way to the goal without inter-
fering with the obstacles. This can be easily achieved by having a vector field for
each obstacle O with vectors pointing diametrically away (AvoidObstacle) and
one vector field for the goal where all vectors point toward the goal (MoveToGoal).
Now, all the vector fields which are atomic behaviors can be simply combined
by superposition. In addition, at each time step the calculation has only to be
performed for the agent’s current position and not for each point in the whole
two-dimensional field. Combining atomic behaviors, the basic behaviors are con-
structed, which will be introduced in the following.

Normal Behaviors. The normal behaviors are STOP, WANDER, ACQUIRE,
DELIVER1 to DELIVER4, and DROP and have the following function:

STOP: Stand still and do nothing with the gripper.
WANDER: Wander around in random direction to find some flags. Gripper is

opened.
ACQUIRE: Approach the nearest flag with gripper in trigger modus, i. e. that

it closes its gripper if the flag is in the gripper.
DELIVER(1-4): Move toward bin 1, 2, 3, or 4. Only applicable if the agent

holds a flag in its gripper.
DROP: Lie down the flag in the gripper and move away from the flag’s position.

Imitation Specific Behaviors. The imitation system’s functionality has been
implemented by the two behaviors OBSERVE and APPLY. They have the pos-
sibility to access the agent’s episode memory and to read the observed agent’s
emotion system’s state directly.

OBSERVE: An agent can observe any agent within a predefined radius. This
behavior takes care of keeping close distance to the observed agent so that the
observation is not interrupted. While observing, the executed behavior and emo-
tional state change of the observed agent is recorded at every time step. Every
time the observing agent has to make a decision on the following three possibil-
ities:

– Observe further since the collected data is useful so far.
– Stop observation, because the recorded data contains no valuable informa-

tion.
– Stop observation and refine the recorded data for storing into the episode

memory.

Its result is based on the emotional change of the observed agent. If the quality
(cf. equation (1)) has changed significantly (ΔG ≥ ΔS , ΔS = 0.2) in the consid-
ered time frame the episode will be extracted and saved in the episode memory.
Otherwise, it will be forgotten. The episode’s start is set to the behavior immedi-
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ately preceding the first rise of quality. Its end is set to the behavior immediately
succeeding the last rise of quality. Then, the episode is compressed, meaning that
only behaviors that at least increase the quality by ΔB (ΔG ≥ ΔB , ΔB = 0.09)
are left in the episode. The episode memory is limited to ten memory entries. If
it is already full, an episode with a lower quality value than the newly observed
episode is abandoned, and the new episode is ready to be used the next time the
agent executes the APPLY behavior. The values ΔS , ΔB , and the size for the
episode memory have been determined empirically.

APPLY: In this behavior the agent has to choose which one of the previously
collected episodes is the best one to apply in the current situation. To solve this
problem the agent looks at the G values of every episode and at the individual
emotion’s changes. But, these values have been observed only with another agent.
It does not mean that these emotion changes will appear if the observing agent
is applying the episode’s behavior by itself. To tackle this problem the emotional
differences are adjusted after every application. This way, the agent can filter
out badly observed episodes or correctly observed episodes that do not work for
it. Let ΔEk be the observed episode’s difference for the emotion k before and
after the application, and ΔEAk its difference at the actual application. Then
the emotional difference is adjusted as follows: ΔEk ←− 0.9 ·ΔEk + 0.1 ·ΔEAk

Using this adjustment, also the problem of “eternal episodes” could be solved,
which occurs, when an observed episode specifies certain emotional increases
which are never perceived when the agent applies the episode the first time.

3.2 The Emotion System

The driving force behind the propagation of memes in this work is the agent’s
emotion system: memes will only be copied from one agent to another if they
serve the well being of the imitating agent, i. e. the execution of its behavior
sequence proved as being advantageous.

MEXI [12] and Kismet [8] have successfully shown how emotions can be
modeled and expressed using an algorithmic approach. In this work, MEXI’s
emotion architecture has been adopted, offering a triple-tower architecture with
its middle tower (the behavior system) enhanced by an emotion system. This is
responsible for setting the action selection bias towards actions that will result
in a better emotional feeling. Differently from MEXI, the emotion system in this
work does not directly affect the behavior system in action selection. Instead, the
output of the emotion system works only as an advice for the imitation system
which has been inserted between the behavior system and the emotion system
(cf. Fig 1). Ultimately, the imitation system chooses which actions are executed.

At the beginning, when no episodes have been observed yet, the emotion sys-
tem’s choices for behavior are accepted by the imitation and forwarded directly
to the behavior system. In the long run, when the imitation system has gathered
many beneficial episodes these episodes are preferred to the emotional system’s
choices.

The emotion system controls the emotions and drives. The emotions can be
positive or negative ones and are real values in the range [0, 1] having a threshold
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value. In this work we distinguish the positive emotion “joy” and the negative
emotion “anger”. If the positive emotion’s threshold is exceeded or the value
for the negative emotion falls below the threshold those emotions are said to
be satisfied and the agent “feels good”. Otherwise, the emotions system tries to
get back to the satisfied area. In this work only one drive is used – the drive
Imitation, which controls the recurrent phases OBSERVE and APPLY. The
drive’s value ranges in the interval [−1, 1] and has two thresholds – a positive
and a negative. The area between those thresholds is called the homeostatic area,
meaning that the drive is satisfied. The drive is connected to the OBSERVE and
APPLY phases with their corresponding behaviors. If the value for Imitation
exceeds the positive threshold it is an indicator that the emotion system has
the bias to observe other agents. In the other case, if the value crossed the
negative threshold, the imitation system would try to apply some previously
observed episode. In both cases the emotion system is not obstinately switching
to the corresponding behavior. Instead, it only modifies its inclination toward
the behavior by means of its configuration, as with MEXI. It is important to
note that the choice of behaviors is no discrete action. Instead, as modeled in
the MEXI architecture, emotions configure the individual behavior weights. In
the end, the final configuration is calculated by the configuration suggestions of
each emotion [12].

The internal state of an agent is completely described by its emotions. To
ease the comparison between two emotional states, which is necessary in the OB-
SERVE phase, the quality G describing the desirability of an emotional state
is introduced. Let P and N be the number of positive and negative emotions,
respectively. Further, let Ek,p denote the positive and El,n the negative emo-
tions with k ∈ [1, . . . , P ], l ∈ [1, . . . , N ], and wi the individual emotion weights
denoting its impact on the overall quality. Then the quality G is calculated as
defined in Formula (1).

G =
P∑

k=1

wk · Ek,p +
N∑

l=1

wl · (1 − El,n) . (1)

Now, an episode Q lasting from time t1 to t2 can be easily classified depending
on the quality value before t1 and after t2:

Gt2 > Gt1 ⇒ Episode Q is favorable
Gt2 ≤ Gt1 ⇒ Episode Q is not favorable

How do external stimuli affect the emotions? Emotions in real life have inter-
esting time dependent properties. E. g. the emotion anger decays over time if the
initial anger evoking stimulus has ceased. This behavior is modeled with the help
of excitation functions. Combining emotions with excitation functions and ex-
ternal stimuli, Fig. 2 shows exemplarily how the emotion anger develops. In this
diagram the diagonally hatched areas stand for negative stimuli, the horizontally
hatched areas for positive ones. At t = 2 a small negative stimulus arouses anger
to a small degree. At t = 3 the stimuli has increased its intensity resulting in a



100 Willi Richert, Bernd Kleinjohann, and Lisa Kleinjohann

Fig. 2. Example: The responsiveness of anger at negative and positive stimuli.

steep rise of the emotion anger. At the time step 4 still a negative stimulus is
perceived by the agent. However, since the excitation function is stronger than
the small stimulus, the anger is decreased. Finally, at t = 7 a positive stimulus
results in a steep decrease of anger’s intensity.

3.3 The Imitation System

The act of imitation is made up of the following three processes [7]:

1. Recognition of successful action sequences.
2. Transformation of these sequences from the perspective of the demonstra-

tor into the perspective of the imitator.
3. Generation of the according action sequence.

Recognition and transformation is the task of the OBSERVE behavior. Gener-
ation is the domain of APPLY. The question, when to observe other agents and
when to apply the observed episodes is addressed by the emotion system and its
cyclic property of oscillating between the according two phases.

Because the agents have no possibility to see some kind of gesture or facial
expression of the observed agent they need another means by which they can
judge the outcome of the recently executed episode. Because the agent society
is run in a simulation environment a direct interface to the observed agent’s
“mind” was implemented into the architecture, enabling reading of the recently
executed action and emotional state.

As in real life the human interpretation of emotional expression is always
faulty, some noise in the interface readings is needed to be more realistic. How-
ever, the noise has not been added to the readings directly. Instead the agents
have to find out the beginnings and ends of observed episodes in a stream of
observed behaviors by themselves. In this way, uncertainty has been added and
mutation of memes is enabled. The observer has three data entities at his dis-
posal: The observed emotion state prior to an action, the action itself, and the
observed emotion state immediately after the behavior execution. To quantify
an emotional state to make it comparable the quality G that is computed out of



Learning Action Sequences Through Imitation 101

the emotional state’s components as described in section 3.2 is used. The more
favorable an emotional state is the higher is the value of G. Taken an episode
that lasts from time step t1 till t2 an episode is said to be favorably if Gt2 > Gt1 .
In this case the agent has to process the episode’s data and save it for the ac-
cording emotional state. While executing the OBSERVE behavior the quality
of the observed agent’s emotions is monitored at every time step. In case that
it is not increasing over a predefined period of time the OBSERVE behavior is
canceled. It does not suffice to record only the executed behaviors. If, e. g., an
agent only records the action sequence (A1, A2, A3) it does not know when the
state changes A1 → A2 and A2 → A3 have occured. In addition, the events that
triggered the behaviors have to be saved. Here, the changes of the emotions are
treated as event triggers. If an emotion has increased or decreased more than
a predefined value this change is considered as being a trigger for the following
executed behavior of the observed agent. If the observer is executing this episode
in the future, it will not switch to the next episode step or behavior until it is
registering at least the same emotional changes.

The episode memory Z consists of up to zmax memory entries Zi = (E, O, T ),
which stands for episode, originator, and time-stamp, respectively. The triggers
or preconditions that must be met before the next behavior in that episode can
be executed are stored together with the behavior itself. Thus, an episode entry
is a tuple (C, b) with C being the emotional preconditions for the behavior b and
b the number of the corresponding behavior. Every time the agent has observed
an apparently advantageous episode and saves it in its episode memory it also
updates its mapping from emotional states to episodes. This way it always knows
which episode to execute at the current emotional state.

4 Application Example

As already stated a flag capturing environment is used as an application exam-
ple (cf. section 3). Since the basic behaviors for this application were already
described in section 3.1 this section concentrates on the agent’s emotion system.
In this example, it controls the positive emotion joy, the negative emotion anger,
and the drive imitation. The threshold values of both emotions are fixed, but
the drive’s thresholds are dynamically adjusted to be more flexible when a more
greedy or wacky behavior is needed.

Impact of Stimuli on the Emotions Joy and Anger. The agent’s per-
ception system is able to extract the following perceptual predicates out of the
environment: FlagVisible is true, if a flag outside a bin is visible. FlagInGripper
is true, if the agent holds a flag. StayingInBin is true, if the agent stays in one of
the four bins. These predicates’ impact on the agent’s emotion system is listed
in Table (1).

The Role of the Imitation Drive. For simplicity reasons the drive’s meaning
has been changed compared to Plutchik. In this work, the single drive imitation
has the only purpose of controlling the OBSERVE and APPLY phases together
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Table 1. Impact of perceptions on emotions. Meaning of impact column: “↑”: increase,
“↓”: decrease, “↑↑”: strong increase, “↓↓”: strong decrease, “�”: only the first time of
occurrence and once more only after a longer period of time.

Perception true false

FlagVisible Joy � ↑↑ Joy ↓
Anger � ↓↓ Anger ↑

FlagInGripper Joy � ↑↑ Joy ↓
Anger ↓ Anger ↑

StayingInBin Joy � ↑↑ —

with their corresponding behaviors. Its thresholds mark the point where the
agent has the possibility to switch to the according behavior. The interval be-
tween the positive and negative threshold is called the homeostatic area, where
the agent’s drive is satisfied. As opposed to Plutchik, the drive is not returning
to the homeostatic area when the proper behavior is executed in the APPLY
mode. Instead, the drive’s state is locked until the agent has managed to execute
all episode steps contained in the imitated episode.

Impact of the Emotions and the Drive on the Choice of Behaviors.
The values of the emotions and drives affect the bias toward their individual
preferred behaviors. If an emotion is not satisfied it can strengthen or reduce its
bias of a behavior that could satisfy or prevent it. In this work we just reduced
the biases of the two imitation related behaviors in favor of the other behaviors
that yield a more direct effect. The drive’s role is for controlling reasons but
works similar via bias adjustments. The impact of the emotions and drives are
listed in Table 2.

5 Evaluation

To achieve the goal of demonstrably showing the performance improvement of
simple imitation an agent society consisting of ten agents was simulated. For
that purpose we used the TeamBots1 package which provides a full range of sim-
ulation supporting software modules. The agent society’s learning success can
be investigated in two ways: 1) By simply measuring the performance increase,

Table 2. Impact of the emotions “joy” and “anger” and the drive “imitation” on the
choice of behaviors. “>”: exceeding its threshold, “<”: falling below the threshold. “∼”:
the homeostatic area. “↑”/“↓”: increase/decrease of the preference of the behavior.

Emotion Threshold Impact

Joy > OBSERVE ↓
< —

Anger > —
< APPLY ↓

Drive Threshold Impact

Imitation > OBSERVE ↑
∼ OBSERVE ↓

APPLY ↓
< APPLY ↑

1 www.teambots.org
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and 2) by analyzing the agent society’s diversity, i. e. how the agents disperse to
groups using similar behavioral patterns. Each simulation (also called a simula-
tion round) consists of 10,000 steps. To achieve meaningful results, the simulation
has been consecutively executed 100 times. After the first round each simulation
used the learned episodes from the previous round, but randomized the agents’
and flags’ positions. This simulation of 100 rounds was repeated 80 times from
scratch (called a simulation run). Afterward, an average run is calculated, in
which every average nth round is calculated of the average of all the nth rounds
in the 80 simulation runs.

In order to screen the learning progress the Wellness-Test has been devised.
It calculates the performance measure w for every agent as follows: For every
simulation step increase w by one for every satisfied emotion, i.e. if the positive
emotion joy is above its threshold or the negative emotion anger is below its
threshold. Since every simulation round consists of 10,000 simulation steps, an
agent may collect up to 20,000 Wellness points. This value is reachable only
in theory, though, because even the best agent will start its observed action
sequences only if one of the emotions is dissatisfied, and this means that it will
not get maximum Wellness points for the according simulation step. The average
of all ten agents which accounts for the performance of the total agent society
is displayed in Fig. 3. The Wellness interval [0, 20000] is transferred to [0, 1].
Starting with 0.178 after step 0 the average performance amounts to 0.397 after
step 99, which means an increase by approximately 120%.

6 Results

Transferring Shannon’s information entropy [17] to the field of society diversity
in ethnology (cf. [5]) the overall diversity of the agent society with ten agents in
this work can be computed with Formula (2):

H(A) = −
c∑

i=1

Pi log2(Pi) . (2)
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Fig. 3. The average performance regarding to the Wellness-Test over 100 rounds. Every
round is the average over 80 runs. The performance increase amounts to ≈ 120%.
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Here a society A is subdivided into n clusters C1 . . . Cn. The proportion of cluster
Ci is denoted with Pi = |Ci|∑

n
j=1

|Cj | . Hence, with ten agents the value for H(A)
lies within the interval [Hmin, Hmax], where Hmin denotes the diversity for a
totally homogeneous society (all agents in one cluster) and Hmax is the diversity
value if the society is totally diverse, i. e. ten clusters each containing one agent:
Hmin = 0, Hmax = −10 · (0.1 · log2(0.1)) ≈ 3.322. The clusters are calculated
on the basis of the resemblance of the episode memory of the two agents Ai and
Aj , denoted as D(Ai, Aj) in Formula (3):

D(Ai, Aj) =
1
S

∑
k

|πi(k) − πj(k)| . (3)

The number of different states is S. πa(k) stands for the episode that agent a
is selecting in state k. But how can Episodes be subtracted? The expression
|πi(k) − πj(k)| is defined as in Formula (4).

|πi(k) − πj(k)| :=
{

1 , if Ei 	= Ej

0 , otherwise . (4)

with Ek being the episode memory of agent Ak. Two episode memories are con-
sidered different, if there is at least one state for which both agents select different
episodes to execute. The state is a two-bit number, with joy corresponding to the
higher bit and anger to the lower bit. “1” means that the emotion is satisfied,
“0” otherwise. The state (joy = 1, anger = 1) is omitted because in that case
the agent is totally content with the actual situation and no episode has to be
executed. Having three different states Formula (3) can have the values 1/3, 2/3

and 1.0. The grouping into clusters can now be performed for a given resem-
blance threshold ε. That means that two agents are considered to be sufficiently
equal for belonging to the same cluster if the following equation is satisfied:
D(Ai, Aj) < ε ⇐⇒ Ai ≡ε Aj .

In the following the diversity and clustering of the agent society is applied to
an example, which is arbitrarily taken from the 80 simulation runs. Diversity and
clusters are calculated dependent on the value for ε. This has to be set between
two possible consecutive values of D(Ai, Aj). In this case we chose the values
0.4, 0.7 and 1.0 for ε.

Example. The episodes that the agents have learned after 100 simulation
rounds are shown in Table 3. D(Ai, Aj) is calculated in Table 4. Having ε set
to 0.4 we get the clustering C = {{0, 1, 8}, {2}, {3, 6, 7}, {4, 5}, {9} } and
the heterogeneity H = 2.17095059445. Comparing this value for H with the
heterogeneity interval [0, 3.322] we can say that neither all agents learned the
same (then H would be zero) nor learned they very different episodes. Learning
has taken place which shows that agents have imitated each other to a certain
degree. Doing the calculation for all the values of ε the clustering is displayed
in Fig. 4 to point out how clusterings are grouped together with an increasing
value for ε.
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Table 3. Example: Learned Episodes of the
ten agents after 100 simulation rounds. Leg-
end: W=WANDER, A=ACQUIRE, D(1-
4)=DELIVER(1-4), DR=DROP.

Agent Emotional state k
0 1 2

0 A D1 A D1 A D1

1 A D1 A D1 D1 DR

2 D3 DR D3 DR A D2

3 A D3 A D3 A D3

4 D4 DR D4 DR D3 DR

5 D4 DR D4 DR D3 DR

6 A D3 A D3 A D3

7 A D3 A D3 A D3

8 A D1 A D1 A D1

9 A D4 A D4 D1 DR

Table 4. Example: Difference
D(Ai, Aj) of the agents’ episode
memories. D(Ai, Aj) is symmetric,
only the triangular matrix is needed.

A 1 2 3 4 5 6 7 8 9

0 1/3 1 1 1 1 1 1 0 1

1 1 1 1 1 1 1 1/3 2/3

2 1 1 1 1 1 1 1

3 1 1 0 0 1 1

4 0 1 1 1 1

5 1 1 1 1

6 0 1 1

7 1 1

8 1

Fig. 4. Example: Clustering with ε = 0.4 (H ≈ 2.17), ε = 0.7 (H ≈ 1.85), and ε = 1.0
(H = 0). The numbers in the circles denote the agents.
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Fig. 5. Histogram of the heterogeneity. In the heterogeneity interval [0,3.322] the av-
erage of all runs is Havg = 2.57.

Meaning of the Heterogeneity Values. Relating the heterogeneity of all
last rounds in the 80 runs, the distribution can be seen in the histogram of
Figure 5. It divides the histogram interval in seven non-zero areas. The height of
each box stands for the number of runs in which the heterogeneity of the agent
society after the last round lied in the area’s interval. The average heterogeneity
is Havg = 2.57. Hence, in this work for the heterogeneity interval [0, 3.322] the
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average agent society is approximately 3.322−2.57
3.322 = 0.752

3.322 ≈ 0.23, that means
23% homogeneous. How can this homogeneity rate be evaluated? It means that
although some measurable amount of the agent society adopted behaviors of
other agents, there has been left room for the development of new behaviors.

7 Discussion and Outlook

In this paper an agent architecture has been described that enables agents to
learn behavioral patterns also called “action sequences” through imitation. In-
vestigations have been conducted how those agents develop a kind of society by
means of similar episodes they execute in the same states. It could be shown
that using this kind of architecture the average learning performance of the
agent society can substantially be improved, i.e. clusters of agents are emerging,
where the individual agent’s performance increases with more and more imitated
episodes.

In dynamic environments where the future development is not predictable,
imitation can pave the way for agent societies to adapt appropriately. Thus, we
see imitation as being a cornerstone for organic systems. We plan to investigate
how physical agents perform with such an architecture. Equipped with full-
colored LEDs expressing emotions it will be both more realistic but also difficult.
Future work should also investigate, how goals can be incorporated in an emotion
system that is used in technical applications to achieve a truly goal-directed
behavior of a complete system. Furthermore, it would be interesting to find out
how memes, i. e. the episodes, change in detail when being transferred from one
agent to another, if more realistic randomization effects could be deployed.
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Abstract. The automated execution of business processes that are composed of 
individual web services has seen a growing importance throughout enterprise 
computing in the recent years. The Business Process Execution Language for 
Web Services (BPEL4WS) has become the predominant language to express 
such business process compositions. In this paper we present the design and 
implementation of a Robust Execution Layer that acts as a transparent, config-
urable add-on to any BPEL4WS execution engine to support self-healing exe-
cution of business processes. Resilience of the process execution is achieved 
through service replacement in case of communication failures, by relying on a 
robust peer-to-peer service discovery and selection mechanism for alternative 
services. 

1   Introduction 

The availability of web-service based middleware has opened new possibilities for 
business process automation. Web service infrastructures and in particular the WSDL 
[1] and UDDI [2] standards provide a unified way of describing, registering, and 
looking up services, and of binding service descriptions to service instances. The 
service-oriented computing metaphor can be applied in a natural way to model busi-
ness processes as compositions of individual service requests, which can be mapped 
to web service calls. The Business Process Execution Language for Web Services 
(BPEL4WS; in the remainder of this paper abbreviated as BPEL for the sake of sim-
plicity) [3] is probably the best known example of an executable business process 
language. 

A shortcoming of today’s business process languages is that the runtime infrastruc-
ture supporting them does not provide a great deal of flexibility as to how exceptions 
and errors are handled. Rather, a lot of the underlying logic in how to deal with fail-
ures at execution time needs to be defined at design time and programmed into the 
process description code. 

Over the past few years, peer-to-peer (P2P) computing has been emerging as an ar-
chitectural approach for building distributed software systems (mostly focusing on 
distributed resource management) that provides built-in, low-cost, and highly scalable 
mechanisms for ensuring software resilience. 

The objective of the research described in this paper is to bring together the 
strengths of state-of-the-art service-based business process execution languages and 
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infrastructures (exemplified by BPEL) on the one hand, and of P2P architectures on 
the other. In particular, we present the design and implementation of a middleware 
framework called Robust Execution Layer (REL) that acts as a transparent, configur-
able add-on to any BPEL execution engine to support the self-healing execution of 
business processes that are managed by the engine. By using P2P protocols managing 
service registration and lookup, REL provides improved service-level resilience with-
out the explicit need of additional dedicated hardware or communication redundancy, 
reducing the management overhead for centralized components. 

In designing the robust execution layer, a number of technical problems needed to 
be solved, including the management of the execution context of multiple process 
instances. The paper presents architectural and methodic approaches to solve these 
problems. The underlying P2P architecture has been developed in the context of the 
European Integrated Project ATHENA [4]. ATHENA addresses the vision of seam-
less interoperation of distributed enterprises across and beyond Europe, focusing on 
the problem of interoperability, but also covering aspects such as cross-enterprise 
business process modeling and architectures and platforms for business process man-
agement and enactment (see also [5]). 

The structure of the paper is as follows: In Section 2, we briefly introduce the 
BPEL language, discuss levels of resilience, and identify basic requirements and 
problems to be solved in adding resilience to business process execution. Section 3 
introduces the REL architecture and outlines the basic components and their interac-
tion. Section 4 presents an example scenario for the usage of REL. Related work is 
discussed in Section 5. Section 6 concludes the paper and outlines areas of future 
work. 

2   Problem Description 

In this section we will give an introduction to the basic principles of BPEL and ana-
lyze a number of problems that need to be addressed to provide self-healing execution 
support in the case of a partner service failure. Throughout the discussion, we will 
consider RPC style interactions with partner web services using SOAP [6] encoded 
messages that are transferred via the HTTP protocol. However the principles dis-
cussed in this section can also be applied to message or document based interaction 
with web services. 

2.1   BPEL Basics 

The Business Process Execution Language for Web Services has emerged from the 
earlier proposed XLANG [7] and Web Service Flow Language (WSFL) [8]. It enables 
the construction of complex web services composed from other web services that act 
as the basic activities in the process model of the newly constructed service. BPEL 
offers a conceptual distinction between abstract processes that describe the external 
view on the process model and executable processes that describe the workflow of the 
compound service and can be executed by a process execution engine in order to 
provide the functionality of the compound service to a client. The specification of an 
executable process basically defines a blueprint that models the stateful interaction 
and is used by the execution engine to derive a process instance. This process in-
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stance captures the state of the interaction with all external web services and clients as 
well as internal state data used throughout the process workflow. Access to the proc-
ess is exposed by the execution engine through a web service interface, allowing 
those processes to be accessed by web service clients or to act as basic activities in 
other process specifications. 

In traditional workflow management systems, a business process is represented by 
a workflow model. This model consists of a number of basic activities and describes 
their order of execution. Similarly, BPEL models business processes as sequences of 
basic activities and introduces control constructs such as loops or conditional 
branches [9]. The most important activities offered by BPEL for the business process 
specification are the invoke and receive activities. The invoke activity is used to in-
voke external services while the receive activity enables the process to collect exter-
nal input and delay further execution of the process flow until reception of this input. 
In the web service interface exposed by the execution engine, the receive activity is 
represented by an operation provided to clients to invoke and pass parameter values to 
the process instance during its execution. 

The state of a business process includes the previously exchanged messages be-
tween partners as well as temporary data used in the process flow. To catch this state 
data, BPEL offers the ability to define and modify variables in the workflow of a 
business process. Variables may be typed as WSDL message types, XML Schema 
[10] simple types or elements. 

A number of different process instances derived from the same process specifica-
tion may be created by the process execution engine upon service requests received 
from different clients. Messages from the clients to the business process are directed 
towards a single web service port. While this addressing is sufficient to determine the 
process specification corresponding to the port or port type, another mechanism is 
required to identify the correct process instance that should receive the message. 
BPEL defines the concept of correlation sets in order to enable the engine to carry out 
instance-level routing of messages.  

A correlation set is a group of message properties that are sufficient to identify the 
process instance a message has to be delivered to during the process conversation. 
The correlation properties can be regarded as late bound constants that are initiated 
and assigned by a specially marked message. 

Activities in a BPEL process are associated with a surrounding scope that holds 
definitions for variables and correlation sets as well as event handlers, fault handlers 
and a compensation handler. Event handlers and fault handlers provide a mechanism 
to respond to messages or faults emitted by activities or external partner services. 
They are active process logic embedded in the process specification that allows for 
the termination of activities and the reversal of effects caused by prior execution of 
activities.  

2.2   Fault Conditions 

Consider the process execution environment shown in Fig. 1.An operation f provided 
by a partner service is invoked by the process P. The call is encoded as a SOAP mes-
sage and transmitted via HTTP to the service provider where some service middle-
ware decodes the SOAP message and hands the call to the specific implementation 
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the service. The result of the call is then again encoded as a SOAP reply and transmit-
ted via HTTP to the process engine. Fault conditions can arise at three different levels 
in this interaction: 

• Application specific errors may occur during the processing of the request in the 
service implementation. 

• The service middleware may produce errors during the decoding or encoding of 
messages if, for example, no suitable serializers are available to encode certain re-
sult contents. 

• There may be communication failures in the transport protocol. The service pro-
vider may not be reachable due to network interruption or system failure. 

While errors on the upper two levels are content or application related, a possible 
recovery from communication failures may be the replacement of the original service 
by another service that also provides the operation f1. In this case, the whole process 
could be successfully finished in spite of communication failures with the originally 
contacted service provider.  

2.3   Realizing of Fault Recovery in the Process Execution Environment 

We now present three different ways to realize fault recovery by replacing a service 
with another service of the same type within the BPEL process execution environ-
ment.  

The replacement of a service can be seen as a dynamic partner binding that can be 
addressed at the process specification level and thus can be encoded in the process 
specification itself. In this case, the activity to invoke A.f1 is preceded by a directory 
lookup for services that implement the required port type (i.e. the port type of service 
A). Then, a loop is added to surround the invoke activity that consecutively replaces 
the invocation target with one of the services returned by the registry lookup opera-
tion until the invoke activity can successfully be carried out. The structural changes to 
the process specification are shown in Fig. 2. Such a change to the specification of 
invoke activities would have to be explicitly encoded around every service invocation 
that is intended to be performed in a more robust way throughout the whole process. 
We will refer to this alteration of the process specification as intra- process recovery.  

 

Fig. 1. Process execution environment: The process execution engine encodes service invoca-
tions as SOAP messages that are transported via HTTP, received at the service provider after
passing possible intermediary systems, decoded and passed to the actual service. 
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Fig. 2. Structural changes to a process 
specification when dynamic partner 
binding is added to an invoke activity. 

Fig. 3. Redirection of an invocation message after 
a communications failure and service lookup. 

Similar actions may be implemented in the underlying process middleware (i.e. the 
process execution engine or the communications infrastructure used to actually 
transmit the SOAP calls emitted by the execution engine). Communication failures 
can be detected through expiry of a timeout period. If  this event occurs, either (a) the 
engine or (b) a component in the communication infrastructure may perform registry 
lookup for alternative invocation targets and reroute the message to an alternative 
service implementation (this behavior is depicted in Fig. 3). The intermediary system 
in the communications infrastructure may be implemented as a HTTP or SOAP aware 
proxy. Therefore, we will refer to the approaches (a) and (b) as intra-engine recovery  
and proxy recovery, respectively.  

The alteration of the process offers the best way to control the semantics of the 
compensation action to be associated with an invoke activity. Control of the partner 
binding can be specified in a very flexible way and the decision to armor certain invo-
cations can be determined on a very fine-grained level. On the other hand, it also 
poses the need to alter the process specification and introduce additional code at a 
very fine-grained level. A number of operations need to be introduced for every in-
voke activity leading to process “code” that contains robustness additions eventually 
exceeding the size of the original process code. 

The realization of the recovery strategy within the infrastructure – either as an in-
tra-engine solution or as a proxy solution – does not require changes to the process 
specification, therefore no additional code has to be introduced in the process specifi-
cation. The robust invocation of partner services is an inherent, possibly configurable 
feature carried out in an autonomous manner by the execution environment. In the 
case of an engine neutral implementation as a proxy instead of an altered specific 
engine, one is not bound to the concrete implementation or engine features. Further-
more, the feature might be added to the process execution environment without con-
trol of the implementation of the process execution engine. 
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2.4   Dependencies Between Activities and Process Instances 

In the preceding sections we considered only one invoke activity in the flow of the 
process. We will now look at an extended example process P1 that specifies the invo-
cation of a sequence of operations (A.f1, B.g1, A.f2) provided by two partner services 
A and B. If communication with partner A cannot be established and the infrastruc-
ture replaces service A by an alternative service A* for invocation of the operation f1, 
it is very likely that there is an implicit connection between A.f1 and A.f2 that requires 
the subsequent invocation of f2 to also be directed towards A* instead of A. If, for 
example, A is a hotel accommodation service, f1 represents a booking function of this 
service and f2 a payment verification function, both of these operations have to be 
used within the same instance of the accommodation service. 

The recovery mechanism for invocation failures is built on the assumption that 
there are at least two distinct instances of the service of type A to choose from. BPEL 
only offers the options of a static binding to a partner or an explicitly expressed dy-
namic partner binding through additional mechanisms encoded in the process flow. A 
conservative and safe assumption for an infrastructure solution that provides invoca-
tion robustness through replacement of service instances is to assume that the first 
invocation of an operation on one service instance selects this service instance for 
every subsequent invocation. While the process specification determines the type of 
service to be invoked, the infrastructure holds the ability to select among a set of 
service instances that implement this service type. After selecting a particular in-
stance, this instance has to be used for every interaction occurring throughout the 
lifecycle of a process instance derived from the process specification. 

It might be desirable to explicitly tighten or relax the service instance binding 
through internal or external annotation of the business process. Situations may occur 
where subsequent invocations of operations provided by a service are truly independ-
ent and can be directed towards different instances of the service. In other cases, a 
strict binding to the specified service is desired that should under no circumstances be 
altered to another service instance implementing the same service type. As an exam-
ple consider a business process to handle the billing and charging of customers. A 
contract might bind the service requestor to use the credit card service of one particu-
lar company. In this case, it is undesirable to replace the service in case of a commu-
nication failure, even if other companies provide an equivalent service. 

Now consider a situation in which two clients X and Y requested the creation of 
process Instances I1x and I1y derived from P1. An implementation of the process execu-
tion engine has to hold state information for both instances. It can easily extend this 
state information to incorporate the binding between the process instance and the 
service instances used. A proxy implementation which is completely decoupled from 
the process execution engine only receives the SOAP requests emitted by the process 
execution engine. This information contains the target endpoint used for the commu-
nication as well as the message format and message values encoded in the request. 
Consider the above scenario where I1x and I1y invoke two operations f1 and f2 on ser-
vice A. If the invocation of f1 gets redirected to A* for I1x but reaches A in the case of 
invocation by I1y, the proxy has to identify the process instance that executed the 
invocation activity in order to determine whether to redirect the call to A* or directly 
call A when a subsequent request for A.f2 reaches the proxy. This situation is illus-
trated in Fig. 4. If another Process P2 that uses A is instantiated as I2x in the engine, 
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the proxy must also be able to distinguish this instance from the instances derived 
from the other process specifications. 

Information about the process instance may be either explicitly or implicitly en-
coded in the messages passing through the proxy. An explicit encoding requires the 
alteration of the business process to emit some instance identification token. This 
token must be enclosed in every message exchanges with external partner services, 
therefore the input message format of these services must be altered. This solution is 
not satisfactory.  

A more transparent solution would require the process execution engine to emit the 
instance identification token transparently to the process and partner services. It could 
be attached as a SOAP message header to every message emitted by the process exe-
cution engine. This mechanism would allow the development of loosely coupled 
infrastructure components that are not tied to a specific engine implementation but 
enable these components to distinguish process instances participating in a business 
interaction. This solution requires a modification of the communication standard im-
plemented by process execution engines. 

BPEL addresses a similar problem of instance routing of inbound messages 
through the concept of correlation sets (see section 2.1). With the definition of out-
bound correlation sets over message properties used in invoke activities, a proxy 
implementation is in a similar way able to correlate a message with the process in-
stance that is the originator of the message exchange. This approach has some limita-
tions: Since BPEL correlation sets are intended to be used on the messages that are 
inbound to a process, the developer has much greater control over the message speci-
fication used in the conversation. For a given set of external services it might be im-
possible to find a common set of message properties that can be used as a correlation 
set throughout the whole conversation. Furthermore, a distinction between instances 
derived from two process specifications that use the same message for initialization of 
the outbound correlation set is difficult. 

3   Design and Implementation of a Robust Execution Layer 

In this section, we present the design and implementation of a peer-to-peer based 
robust execution layer for business processes, addressing the problems and require-
ments outlined in Section 2. The basic idea of the REL is to provide handling capa-

 

Fig. 4. Two process instances emit a message to operation A.f1. After redirecting one of the 
invocations, the proxy has to determine an invocation target for a subsequent invocation to A.f2. 
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bilities for low level communication faults in the interaction of a business process 
engine with external web service providers. By doing so, the business process is pro-
tected from failures due to propagated errors that are caused by the low level commu-
nication faults.  

P2P systems [11] are designed to be self-healing loosely coupled networks of inde-
pendent nodes. The nodes of the P2P network collaboratively provide a service to 
each other – such as item storage, lookup and retrieval – that can dynamically adapt to 
a large number of nodes as well as withstand frequent node arrivals and departures 
from the network. P2P systems incorporate mechanisms to handle peak loads of in-
formation requests as well as sporadic node failures. To discover services, a service 
repository is needed. In the case of a centralized repository one party has to provide 
this repository while in the P2P network all involved partners collaborate to operate 
the needed service repository reducing the maintenance overhead for centralized 
components in the system. Additionally, P2P schemes have been developed that allow 
service providers to retain firm control of the information they publish to a service 
repository. These inherent design principles of P2P systems are ideal properties to be 
used as an adaptive and resilient information repository in the REL. 

The design of the robust execution layer is intended to avoid the need to alter the 
implementation of the business process execution engine, the business process speci-
fication or the implementation of the partner services. As described in Section  2.3, 
the intra-process as well as the intra-engine recovery realization impose the need for 
those changes. Therefore, the REL is designed as an intermediary component in the 
communications infrastructure that intercepts message exchanges between the process 
execution engine and external services. This intermediary component is basically a 
SOAP proxy that receives service calls from the process execution engine for added 
resilience this proxy could in turn be implemented as redundant failover system. As a 
first step, the proxy has to determine the primary target service for the message. There 
are two possibilities for the selection of the primary target service: 

1. The target service originally requested by the execution engine, if a strict binding 
to a specific service instance has been specified or no prior interaction between the 
process execution engine and the service of a specific type has determined a strict 
binding to another service instance. 

2. A different target service that has been selected during prior interaction between 
the process instance and a specific service instance chosen as an alternative invo-
cation target due to communication faults. 

The REL will then try to pass the message on to the primary target service and re-
lay the results of a successful invocation to the process execution engine. Another 
component of the REL – the endpoint mapper - is used to determine a different target 
service for invocation if no communication link can be established and a deviation 
from the original invocation target is allowed. This deviation is only allowed in the 
first case above, when no strict binding has been specified (e.g. through process anno-
tation). The question whether an alternative target of the invocation is required, al-
lowed or prohibited is answered by the process instance manager of the REL. The 
attempt to contact different implementations of a specific service type may be re-
peated upon subsequent communication faults. If no link can be established at all, the 
error condition is passed on to the process execution engine where fault handling 
mechanisms specified for the business process have to ultimately deal with the error. 
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The purpose of the endpoint mapper is the discovery of alternative services for a 
given target endpoint. It first needs to determine the type of the target service (i.e. the 
port types implemented by the service that is associated with the original target end-
point). Afterwards, it must query a service repository to find other services that im-
plement the same port types. A centralized service repository is a single point of fail-
ure in the overall system. Therefore, the endpoint mapper of our robust execution 
layer is implemented on top of a P2P system that provides mechanisms for the storage 
and retrieval of key-value-pairs in a robust way even under node failure. 

For the purpose of instance identification and the initial identification of partner 
services associated with the business process specifications we use a process reposi-
tory connector to realize access to the set of process specifications that have been 
deployed in the business process execution engine. Access to the process specifica-
tions is optional and only needed to allow an implementation of the process instance 
manager to determine the process instance that is the originator of a specific service 
call. 

The resulting component design of the REL with an embedded business process 
execution engine as well as some partner service providers is illustrated in Fig. 5. The 
core interfaces of the central components used by the REL proxy are illustrated in Fig. 
6. Supporting classes as well as the factories for the process instance manager as well 
as the process repository connector components are omitted for brevity. 

 
Fig. 5. Components of the Robust Execution Layer acting as an intermediary system between 
the process execution engine and the service providers. 

 

Fig. 6. Core interfaces used by the REL proxy. The factory pattern is used for all components 
in analogy to the EndpointMapperFactory. 
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We use the IBM Business Process Execution Language for Web Services Java Run 
Time (BPWS4J) [12] as the process execution engine with our implementation of the 
REL. The engine is deployed in a Tomcat servlet container [13] that is configured to 
use the REL implementation as a proxy for HTTP requests. This is simply achieved 
by passing the http.proxyHost and http.proxyPort options to the java 
virtual machine that is used to load the Tomcat server. 

The functionality of the REL is provided to the process execution engine by an im-
plementation of an HTTPServlet. This RELProxyServlet works as a transparent 
HTTP proxy when all robust execution support is disabled. In order to provide the 
additional functionality, the RELProxyServlet uses Factories to instantiate the 
needed components. The concrete implementation of the corresponding interfaces of 
these components is configurable by specifying the implementing classes as run time 
properties. The basic algorithm used by the RELProxyServlet to handle a client re-
quest is shown in Fig. 7. 

 

Fig. 7. Core message handling algorithm used by the REL proxy servlet. 

3.1   P2P Based Service Discovery 

A robust lookup component for partner services is a key concept of the REL. In a 
classical service-oriented implementation of the system, this functionality is provided 
by a centralized service repository. To construct a more robust system, we imple-
mented this service repository using the Resource Management Framework 
(RMF) [14].  
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The RMF is a P2P system that collects a number of nodes to logically provide a 
single distributed hash table called the Information Space of the RMF. This informa-
tion space allows to publish and retrieve data elements that are called resources. Leas-
ing and replication are used to ensure persistence of the published information even 
under conditions of node failure. The RMF provides mechanisms to modify and 
search for resources in the information space and to subscribe to resource changes on 
elements already published or published in the future. Resources in the RMF are 
XML elements that have the following child elements: 
• The mandatory ID of a resource that is used to uniquely identify the element. This 

can either be a globally unique UUID or some fully qualified hierarchical name, 
guaranteeing uniqueness of the ID. 

• An optional name of the resource to be used as a user friendly name for applica-
tion independent presentation of the resource. 

• An optional list of keywords to be associated with the resource. 
• Any number of application specific XML elements.  

Developers are free to determine the values of the root element as well as its name-
space specification. 

When a resource is published in the RMF information space, an internal mapping 
to peer addresses in the system is calculated to get a list of nodes that are ultimately 
used to store the resource. The ID and keywords associated with a resource are used 
to calculate this mapping. The search operation works in two phases. It is directed 
towards a set of peers that is determined by the same mapping calculation based on a 
set of given keywords or resource IDs. Afterwards, a query is directed towards this set 
of peers in order to find the desired information among all resources stored at the 
specified peers. The XPath query language [15] can be used to formulate queries for 
resources. 

The web service description language is an XML format used to describe web ser-
vices as a set of endpoints, operations and message formats used in the communica-
tion with the service. We have defined a resource format to publish WSDL descrip-
tions of web services in the RMF information space. This mapping from WSDL 
descriptions to RMF resources is tailored towards answering the query stated by the 
REL endpoint mapper. A WSDLResource contains the WSDL document as a child 
element, a generic UUID for identification purposes and the names of the port type, 
operations and service elements as well as the endpoint address associated with the 
port definitions of the WSDL document as keywords for the resource. 

We use the WSDL4Java [16] API to deserialize WSDL documents into in memory 
object representations that are then traversed to collect the needed keywords. The 
REL implementation provides the WSDL2RMF class that exposes a set of static cre-
ateResource methods when a WSDL description is either passed as String, 
Stream or URL reference. The WSDLResource returned by this implementation can 
then directly be published using the RMF API. The WSDL to RMF mapping is also 
needed by service providers that wish to publish their services in the information 
space. Implementing a P2P client that connects to the RMF information space and 
publishes WSDLResources for a given set of WSDL descriptions is straightforward 
and requires only a few lines of Java code. 

A RMF based implementation of the EndpointMapper interface is provided by the 
RMFEndpointMapper class. It uses the search method of the RMF API in order to 
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locate the WSDLResource associated with the endpoint address specified in the ser-
vice invocation that was received by the REL proxy. After retrieval of the WSDLRe-
source from the information space, the endpoint mapper can determine the port type 
implemented by the target service and issue a second query to the information space 
that is now based on the port type name. This second query yields a list of registered 
services that implement the desired port type and are then returned as a list of alterna-
tive invocation targets. If the lookup based on the target endpoint address fails (i.e. the 
service has been unavailable for a long time and the WSDL resource has been pruned 
from the information space by leasing), the process repository locator is used to de-
termine the port type of the target service. 

3.2   Process Repository Connector 

The BPWS4J engine uses a set of java server pages for the deployment and removal 
of processes. Our implementation of the process repository connector is an extension 
of this management application. It extends the deployment and undeployment func-
tionality by taking a snapshot of the BPEL process specification to be used by the 
REL. In addition to the process description, the WSDL descriptions of the partner 
services involved in the business process are captured by the process repository con-
nector. 

The BPEL specification respectively the WSDL descriptions are parsed to collect a 
set of port type to service endpoint mappings that can later on be used if the port type 
of a service can not be resolved by a query to the RMF. For this purpose, the reposi-
tory connector exposes the method getServiceDescription that takes a target 
endpoint specification as input. Our prototypical implementation of the process in-
stance manager uses the process repository connector’s functionality to gain knowl-
edge about the process descriptions to enable process instance distinction based on the 
messages used to invoke partner services. 

3.3   Process Instance Manager 

The basic functionality of the REL implementation has been tested using a single 
process instance in the BPWS4J engine. In this limited setting, no explicit distinction 
of the process instance is needed. A first prototypical implementation of the process 
instance manager has been created to experiment with the usage of instance tokens 
emitted as SOAP headers by the process execution engine. 

Additionally, a first implementation of a process instance manager has been devel-
oped that uses the process specification returned by the process repository connector 
in conjunction with the definition of outbound correlation sets. In this case, the proc-
ess instance manager parses the SOAP messages to identify the message properties 
included in the correlation set definitions. 

4   Usage Scenario 

Using the REL has a potential impact on the business conversation governed by a 
business process description both for the initiator and for the external service provid-
ers. We will discuss motivations for using the self-healing behavior of the REL for 
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both parties in the setting of a travel planning scenario. We selected this scenario 
because it is easy to understand, and often referred to in the literature [17]1. 

Assume that a number of individual service providers offer web services that en-
able customers to search for hotel rooms, flight and car rental offers and book them. A 
travel agency may describe a business process (referred to as travel process) that 
composes these services into a new service that is capable of offering full travel pack-
ages including airline tickets, hotel accommodation and a rental car. 

If the hotel booking service fails during the lifetime of an instance of this travel 
process, no offer for a travel package can be made to the customer, assuming a stan-
dard modeling of this process in BPEL. This is true even if another hotel booking 
service provider offers the same service and a solution would exist in principle. Using 
the REL this other service provider would be contacted allowing the travel agency to 
provide the travel offer. This way, we can reduce the risk of process failure and thus 
enhance customer satisfaction. While the benefit for the user of the services is obvi-
ous, the service providers might be reluctant to participate in the system since it might 
enable their customers to dynamically switch to another provider on system failure. 
We believe that service providers will nevertheless accept this, since they effectively 
participate in a marketplace where robustness against service failure can be a com-
petitive feature. In order to make its web services resilient against failure, one pro-
vider may install a high availability or load-leveling system. This is basically a pro-
vider side proxy that uses a number of backend service providers to relay client 
requests to. Instead of using such an expensive and hard to maintain solution, the 
service provider may also directly publish the services available at the backend layer 
into the P2P repository where the REL can find the set of backend servers and use 
them accordingly. The two approaches are illustrated in Fig. 8. The REL approach has 
been implemented for this sample use case, and basic functionality could be shown.  

 
Fig. 8. Service Provider using dedicated load balancing and high availability component on the 
left side and direct service publishing in the P2P infrastructure on the right side. 

5   Related Work 

The P2P based lookup mechanism for web services is a key component for the REL. 
In [18] an approach to web service discovery in P2P indices based on space filling 
curves is presented that allows for range queries about keywords. Currently only lit-
eral keyword queries are needed to support the REL, additionally range queries over 
keywords are currently being implemented in the RMF – our underlying P2P informa-
tion infrastructure. Other approaches for decentralized web service discovery focus on 

                                                           
1  In the ATHENA project, we are applying the REL in a more complex automotive supply 

chain application. 
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the use of ontologies and service semantics to organize web service registries into 
collections [19] or perform web service discovery on the semantic web [20], this is 
not the focus of our work.  

In [21] a framework for autonomic modeling and simulation of business processes 
is proposed, this work focuses on supporting the design and development of business 
processes, not on autonomic process execution. 

General requirements for self-healing system architectures are analysed in [22]. 
Robustness against external or internal failure is one of the relevant requirements to 
achieve a self-healing architecture style, it is also a feature our REL introduces to the 
process execution environment. In [23] the authors quantify the effectiveness of self-
healing strategies used within service discovery systems, our work focuses on the 
architectural extension of the business process execution environment to achieve self-
healing capabilities. The self-healing service discovery mechanism is only a part of 
that work that we assume to be addressed in the underlying P2P system. The work in 
[24] proposes a path to a more autonomic behavior of web services, a general exten-
sion of the service oriented archictecture is proposed that does not address the re-
quirements of business process execution.The author of [25] evaluates different mes-
sage passing strategies for optimization of message flow in process based EAI 
systems, he does not show an architecture that generally offers self-healing capabili-
ties for different process execution engines. 

6   Conclusions 

The research described in this paper is motivated by the idea of introducing self-
healing mechanisms to business process execution by integrating state-of-the-art ser-
vice-based business process execution languages and infrastructures (exemplified by 
BPEL) on the one hand, and of P2P architectures on the other. The main contribution 
of this paper is twofold: Firstly, we presented an analysis of the shortcomings of exist-
ing business process execution frameworks concerning flexible failure handling; sec-
ondly, we presented the design and implementation of a middleware framework 
called Robust Execution Layer that acts as a transparent, configurable add-on to any 
BPEL execution engine to support the self-healing execution of business processes 
that are managed by the engine. The combination of BPEL with Siemens’ P2P Re-
source Management Framework enables service-level resilience without the explicit 
need of additional dedicated hardware or communication redundancy, and transpar-
ently supports different underlying software architectures. 

We will further investigate the problem of process instance identification at the 
service level in a loosely coupled infrastructure setting in the future. We believe that 
P2P computing offers an interesting architectural approach to leverage the functional-
ity of today’s client-server business process engines to the case of cross-
organizational business processes that are characterized by heterogeneity, constant 
change, autonomy of partners, and limited information/service access due to organiza-
tional boundaries and competition. This paper investigated the application of P2P 
resource management to the service level. Thus, an important aspect for our future 
research is to extend the scope of this work by investigating the applicability of P2P 
concepts to other facets of distributed business resource management, including busi-
ness objects (e.g. the secure seamless access to business documents such as a request 
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for quotation in a sourcing application, or a technical specification in a collaborative 
product design scenario) and processes (e.g. bottom-up organization of a cross-
organizational business process through the P2P interaction of multiple business 
process engines). Furthermore, it would be interesting to investigate the potential of 
applying the REL in service oriented grid computing environments [26] when model-
ing grid applications as process oriented service compositions. 
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Abstract. Software applications executing in highly dynamic environ-
ments are faced with the challenge of frequent and usually unpredictable
changes in their execution environment. In order to cope with this chal-
lenge effectively, the applications need to adapt to these changes dy-
namically. CASA (Contract-based Adaptive Software Architecture) pro-
vides a framework for enabling dynamic adaptation of applications, in
response to changes in their execution environment. One of the principle
adaptation mechanisms employed in the CASA framework is dynamic
recomposition of application components. In this paper, we discuss im-
plementation issues related to the approach for dynamic recomposition
of application components in CASA.

1 Introduction

A major challenge for software applications executing in highly dynamic envi-
ronments (such as those in pervasive and ubiquitous computing scenarios) is the
consistently changing execution environment of these applications. The changes
in execution environment can be in the form of (i) changes in contextual informa-
tion (user’s location, identity of nearby objects or persons etc.), or (ii) changes
in resource availability (bandwidth, battery power, connectivity etc.).

Contextual information refers to (purely) the information about the context
of an application that may influence the service provided by the application
(such as locational information, temporal information, atmospherical informa-
tion etc.), in contrast to resources that form the physical infrastructure available
to the application for providing this service (such as communication resources,
data resources, computing resources etc.). A change in contextual information
may present an opportunity for an application to adapt its behavior, in order to
provide a more relevant service with respect to the changed contextual informa-
tion. Similarly, a change in resource availability may require an application to
change its resource consumption accordingly, necessitating an adaptation of the
application’s behavior.
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The existing approaches for dynamic adaptation of applications have focused
mainly on runtime changes in resource availability. Most of these approaches
try to adapt the lower-level services used by applications at the middleware
level, and thereby influence the resource consumption due to these applications.
Examples of adaptation of the lower-level services include modifying the quality
or compression level of the data being transmitted over a communication channel
in response to a change in the available bandwidth, changing the caching policy
in response to a change in the available memory etc.

However, we argue that a dynamic change in application code should be
provided as a means of application adaptation, in addition to the adaptation of
the lower-level services at the middleware level, in order to effectively deal with
the changes in execution environment.

This is because: (1) In response to a change in contextual information, a corre-
sponding change in the functionality of an application is usually required, which
typically requires a change in the application code. For example, if the contextual
information related to a Tourist Guide application changes from shopping mall
to open-air cinema, the application needs to provide relevant information about
the weather conditions and show-timings, in place of the information about the
availability of the items in the user’s shopping list in the shopping mall. This
kind of change in functionality requires a change in application code. (2) Even
if small variations in resource availability can be handled by adapting the lower-
level services, for large variations a change in application code is usually required.
For example, consider a Disaster Control application transmitting the live video
stream of an erupting volcano from a mobile node to a coordination center. For
a small drop in the available bandwidth, an adaptive middleware may try to
reduce the quality of the video transmitted, in order to save bandwidth. But for
a significant drop in the bandwidth, it may be more apt for the application to
send a textual description of the volcano (along with frequent images, if possi-
ble), rather than reducing the quality of the video beyond a threshold level. This
kind of adaptation again requires a change in application code.

A runtime change in application code can be most primitively achieved by
hardwiring the adaptation mechanism within an application (e.g. using program-
ming constructs like if-else or switch-case etc.). However, this is a very tedious
and limited solution to the problem. It makes the process of application de-
velopment more complex, because the adaptation code is intertwined with the
application code. Moreover, with this approach the adaptation policy cannot be
changed during runtime, because of the hardwiring of the adaptation mechanism,
posing a limitation to its usefulness for dynamic environments.

Recent approaches for dynamic weaving and unweaving of aspects, influenc-
ing the crosscutting functionality of an application such as security or persis-
tence management, are a step in the right direction (the term aspect used in
the sense of the aspect-oriented programming [6]). But, as the name indicates,
these approaches are restricted to adapting the crosscutting functionality of an
application. Whereas in practice, an adaptation of the core functionality of an
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application may be required as well, like in the examples of Tourist Guide and
Disaster Control applications above.

Modern software applications are composed of components, where each com-
ponent implements a subtask of the application (we will use the term component
to refer to application component in this paper). In a component-based appli-
cation development, the components encapsulate their implementation details,
interact with each other only through their well-defined interfaces (using method
calls), and generally follow the principle of separation of concerns. This makes
it possible and convenient to alter the application code dynamically by recom-
posing the components at runtime.

CASA (Contract-based Adaptive Software Architecture) [1, 10] provides a
framework for enabling dynamic adaptation of applications executing in dy-
namic environments. The CASA Runtime System monitors the changes in the
execution environment of applications, and in case of significant changes carries
out dynamic adaptation of applications. The adaptation policy of every appli-
cation is defined in a so-called application contract. In order to meet adaptation
needs of a broad and diverse set of applications, CASA supports the following
adaptation mechanisms: dynamic change in lower-level services, dynamic weav-
ing and unweaving of aspects, dynamic change in application attributes, and
dynamic recomposition of components. The adaptation concerns are separated
from the application, thereby reducing the complexity involved in developing
adaptive applications. In this paper, we discuss implementation issues related to
the approach for dynamic recomposition of components in CASA.

The rest of the paper is organized as follows. In Section 2, we give a brief
overview of the CASA framework. In Section 3, we identify the key requirements
for dynamic recomposition of components. In Section 4, we discuss implemen-
tation issues related to dynamic recomposition of components in CASA. In Sec-
tion 5, we give an overview of related work. And in Section 6, we conclude the
paper and indicate future direction of our work.

2 Overview of the CASA Framework

Figure 1 shows the conceptual working of the CASA framework. Every comput-
ing node hosting adaptive applications is required to run an instance of the CASA
Runtime System (CRS). The CRS is responsible for monitoring the changes in
execution environment on behalf of these applications, and to adapt these ap-
plications as and when necessitated by a change in execution environment. The
adaptation policy of every application is defined in a so-called application con-
tract.

A three-step adaptation process is illustrated in Figure 1. Every time the
CRS detects a change in the execution environment (step 1), it evaluates the ap-
plication contracts of the running applications with respect to the changed state
of the execution environment (step 2). If the CRS discovers a need for adapting
certain applications, it carries out the adaptation of the affected applications, in
accordance with the adaptation policies specified in the respective application
contracts (step 3).
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Application adaptation can be realized using one or more of the following
adaptation mechanisms supported by CASA, depending on the adaptation needs
of a specific application:

– Dynamic Change in Lower-Level Services: For a dynamic change in lower-
level services used by applications, CASA can be integrated with any adap-
tive middleware for this purpose that supports external regulation of its
adaptation strategy. Several reflection-based adaptive middleware fit in this
category, such as Odyssey [11], QuO [15] etc.

– Dynamic Weaving and Unweaving of Aspects: For dynamic weaving and
unweaving of aspects, CASA relies on a flexible and efficient system for this
purpose called PROSE [13].

– Dynamic Change in Application Attributes: For a dynamic change in ap-
plication attributes, the application needs to provide appropriate callback
methods that can be called by the CRS at runtime.

– Dynamic Recomposition of Components: For dynamic recomposition of com-
ponents, CASA follows an indigenous approach described in Section 4.

a change in
execution environment
warranting adaptation

CASA Runtime System (CRS)

Execution Environment

1

consult
adaptation

policy

2

Applications (1...n)

dynamic change in
components / aspects /

attributes

dynamic change in
lower-level services

Adaptive Middleware

3

Application Contracts
(1...n)

3

Fig. 1. Working of CASA.

<app-contract name="App1">
<context id="1">

<params .../>
<config id="1">

<resources .../>
<components>

<binding handle="HC1" boundto="CdefA1"/>
<binding handle="HC2" boundto="CdefG2"/>
.
.

</components>
<aspects .../>
<callback .../>
<llservices .../>

</config>
.
.
.

</context>
.
.
.

</app-contract>

Fig. 2. Application contract.

An excerpt of an application contract is shown in Figure 2. The application
contract is external to the application, and is specified using an XML-based
language. This enables easy modification, extension, and customization of the
adaptation policy at runtime. Moreover, it facilitates separating the adaptation
concerns from the application.

The application contract is divided into <context> elements, where each
<context> element represents a state of contextual information of interest to
the application (the parameters characterizing this state are specified within
<params> element). Each <context> element in turn contains a list of alterna-
tive configurations of the application, suited to the particular state of contextual
information. These configurations are listed in a special ordering that reflects
their user-perceived preference. Each <config> element, representing a configu-
ration, specifies the resource requirements of the configuration, the components
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and aspects constituting the configuration, the callback methods to be called
for the configuration, and the lower-level services corresponding to the configu-
ration. The detailed specification of an application contract is not described in
this paper as it is not relevant to our discussion of the approach for dynamic re-
composition of components, except the specification of <components> element
which is discussed partially in Section 4.

Depending on the current state of the execution environment (contextual
information and resources), the appropriate configuration from the application
contract is selected and activated by the CRS. More details on the CASA frame-
work can be found in [1, 10].

3 Requirements for Dynamic Recomposition
of Components

A component composition, or just composition, is a collection of components
qualified to do the required application task under a specific state of the execu-
tion environment.

A primary and obvious requirement for application adaptation through dy-
namic recomposition of components is:

Requirement 0: An adaptive application needs to provide a number of alternative
compositions for different states of the execution environment.

We can now define dynamic recomposition of components as changing be-
tween alternative compositions of an application at runtime.

Any two alternative compositions may vary in just a few components, while
many other components remain the same across both compositions. When chang-
ing from one alternative composition to another, there may be some new com-
ponents to be added and some old components to be removed.

Dynamic replacement of components is a special case of a dynamic removal
of a component A followed by a dynamic addition of a component A′, such that
A′ is able to serve all those components that could be served by A, in an alike
manner as A itself.

If a component A can be dynamically replaced by a component A′, then
both A and A′ must subscribe to the same component contract (the term con-
tract used in the sense of the Design by Contract approach [9]). That is, the
following two requirements need to be satisfied by A and A′ (in CASA, dynamic
replacements are bidirectional, i.e. if A can be dynamically replaced by A′, then
it automatically implies that A′ can also be dynamically replaced by A):

Requirement 1: Both A and A′ must conform to the same interface, i.e. the
method signatures of the publicly-accessible methods of A and A′ must be the
same.

Requirement 2: The pre and post conditions of the publicly-accessible methods
of A and A′, which must be satisfied for the interaction of these methods with
their clients, must be the same. The pre and post conditions may also include
certain non-functional assertions or constraints.



Runtime Adaptation of Applications 129

Next, we state a requirement for mapping the state of A to the state of A′.
For this purpose, we define the persistent state of a component as the state that
needs to remain persistent in between its executions.

Requirement 3: A valid persistent state of A when mapped to A′, using an
appropriate state mapping function, must become a valid persistent state of A′.

The following two requirements pertain to the dynamic removal and dynamic
addition of components.

Requirement 4: If a component A is removed during dynamic recomposition,
then it must be replaced dynamically by a component A′ or else all the compo-
nents depending on A must also be removed along with A.

Requirement 5: If a component A′ is added during dynamic recomposition, then
the components on which A′ depends either must already be present or they
must be added along with A′.

Requirements 4 and 5 are related to ensuring the completeness of alternative
compositions.

Both completeness and correctness of every alternative composition, in terms
of its ability to do the required application task under its corresponding state of
the execution environment, need to be ensured by the application developer at
the time of composing the alternative compositions.

The following two requirements are related to ensuring the consistency of the
application.

Requirement 6: If a component A is replaced dynamically by a component A′,
then A′ must be able to continue the execution from where A left.

Requirement 7: The integrity of the interactions among components must not
be compromised due to dynamic recomposition.

Requirements 6 and 7 above help to protect the application from being in an
inconsistent state as a result of the dynamic recomposition.

4 Implementation of Dynamic Recomposition
of Components in CASA

In this section, we discuss the implementation issues related to dynamic re-
composition of components for the applications developed using object-oriented
programming languages. In particular, we consider Java as a target language,
because of its widespread use and popularity. However, we will try to keep our
discussion as language-neutral as possible, so that the results are applicable for
a wide range of object-oriented programming languages.

A dynamic recomposition implies adding/removing/replacing components
dynamically. Dynamic replacement of components is of particular interest here,
as it is more critical than simple addition or removal of components which is rela-
tively straightforward to carry out. Hence we will focus on dynamic replacement
of components in the following.

In principle, there are two possible strategies for dynamic replacement: Lazy
replacement and Eager replacement. Below we briefly discuss the two.
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Lazy Replacement: In this strategy, once the decision for dynamic recomposi-
tion is taken, an already running component is allowed to complete its current
execution before being replaced.

Eager Replacement: In contrast to the lazy replacement strategy, here the ex-
ecution of a running component is suspended once the decision for dynamic
recomposition is taken, and the execution resumes again from the point where
it was suspended, after the component is replaced.

Figure 3 illustrates lazy replacement (Figure 3a) and eager replacement (Fig-
ure 3b). In Figure 3, the horizontal axis represents the time line, and the vertical
dashed line represents the time T when the decision for dynamic recomposition
is taken. In this example, the components A, B, C and D are to be replaced by
the components A′, B′, C′ and D′ respectively as a result of dynamic recompo-
sition (dark bars denote the execution of old components, and light bars denote
the execution of new components). Only the components A and C are under
execution at time T . In Figure 3a (representing lazy replacement) A and C are
allowed to complete their execution before being replaced by A′ and C′ respec-
tively. Whereas in Figure 3b (representing eager replacement), the execution of
A and C is suspended at time T , they are replaced by A′ and C′ respectively,
and the execution resumes again with A′ and C′.

Since the eager replacement strategy is able to give a faster response to a
change in execution environment than the lazy one, we decide in favor of eager
replacement for CASA. However, as discussed later, it may not always be possible
to use eager replacement, and thus sometimes lazy replacement may be the only
option.

A

B

D

C

T

A'

B'

D'

C'

Fig. 3a. Lazy replacement strategy.

A

B

D

C

T

A'

B'

D'

C'

Fig. 3b. Eager replacement strategy.

4.1 Dynamic Replacement Process

In terms of object-oriented programming, a component is essentially an instance
of a class (with a restriction that, unlike normal class instances, components
cannot have any externally-visible state). Thus, from an implementation point
of view, replacing a component involves replacing the corresponding class defi-
nition of the instance. We will use the terms “component” and “class instance”
interchangeably throughout the rest of this paper.

We now define an adaptable class as the one whose instances are dynami-
cally replaceable (i.e. can replace, or be replaced by, instances of other classes
dynamically). Additionally, we define a set of alternative classes as a collection
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of adaptable classes whose instances can dynamically replace each other. That
is, all the adaptable classes that are members of the same set of alternative
classes, and by implication the instances of these adaptable classes, conform to
the requirements 1–3 identified in Section 3.

To ease our implementation process, we impose the following additional con-
ditions:

(i) An instance A of a class C can be dynamically replaced by an instance A′

of a class C′ only if C and C′ are members of the same set of alternative
classes.

(ii) Any given composition may contain instances of only one of the adaptable
classes from any given set of alternative classes. That is, no two instances
in a given composition may be of different classes from the same set of
alternative classes.

We use a variant of the Bridge pattern [2] for hiding the complexities of
dynamic replacement from the application code. In particular, every set of al-
ternative classes is associated with a unique Handle class. The Handle class
conforms to the same interface as the adaptable classes in its associated set.

The Handle class acts as an abstraction that can be bound to any of the
adaptable class implementations from its associated set of alternative classes
at runtime (the terms abstraction and implementation used in the sense of the
Bridge pattern [2]).

We know that (i) any given composition may contain instances of only one of
the adaptable classes from any given set of alternative classes, and (ii) every set
of alternative classes has a unique Handle class associated to it. Therefore, we
can conclude that: for any given composition there is a unique adaptable class
bound to any given Handle class.

The binding between a Handle class and its corresponding adaptable class
for a given composition is represented as a part of the composition specification
in the application contract (refer <binding> element within <components>
element in Figure 2).

In order to provide a layer of transparency between the application code
and the dynamic replacement process, wherever there is a need for creating
an instance of an adaptable class in the application code, an instance of the
corresponding Handle class is created instead. This Handle class instance is
then linked to an instance of the adaptable class that is currently bound to the
Handle class, at runtime (as explained below).

Let a set of alternative classes S consist of the adaptable classes CdefA, CdefB
and CdefC, and the associated Handle class for the set S be HC. At any given
time, HC will be bound to a unique adaptable class from the set S, depending on
the currently active composition. However, this binding may change dynamically
as a result of dynamic recomposition.

In the application code, when a new instance objHC of the Handle class HC
is created, the constructor of objHC invokes the CRS (CASA Runtime System).
The CRS gets the information about the adaptable class currently bound to HC,
say CdefA, from the specification of the currently active composition, and returns
the namespace location of the class CdefA back to the constructor of objHC (the
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CRS also registers objHC for future recompositions). The constructor of objHC
then creates an instance of CdefA, say objA, and stores it internally as active
adaptable class instance.

Although a Handle class conforms to the same interface as the classes in its
associated set of alternative classes, it does not provide a real implementation
for any of the methods in this interface. The methods of a Handle class instance
simply forward the method calls invoked on them to the corresponding methods
of the active adaptable class instance, and return the results as received from the
latter. For example, if a method foo() is invoked on objHC, then objHC.foo()
simply invokes the method objA.foo(), and returns the result as received from
objA.foo().

If there is a change in the binding between the Handle class HC and its
corresponding adaptable class, due to dynamic recomposition, then the CRS
passes the namespace location of the newly bound adaptable class, say CdefB,
to all the instances of HC (including objHC). The instances of HC replace the old
adaptable class instances with the instances of CdefB as active adaptable class
instances (the details of this replacement are discussed next). The calls to an
instance of HC will now be forwarded automatically to the new adaptable class
instance in place of the old one. This way, the Handle class instances help to
hide the details of dynamic replacement from the application.

Figure 4 illustrates the above example of dynamic replacement. In Figure 4a
the Handle class instance objHC is linked to the old adaptable class instance
objA, just before the dynamic replacement is carried out. And in Figure 4b,
objHC is linked to the new adaptable class instance, say objB, just after the
dynamic replacement is over. The external components (extObj1, extObj2 and
extObj3) are largely unaffected by this dynamic replacement, as their links to
objHC remain undisturbed by the change.

objA

extObj1

extObj2

extObj3

objHC

Fig. 4a. Before dynamic replacement.

objB

extObj1

extObj2

extObj3

objHC

Fig. 4b. After dynamic replacement.

Below we discuss the sequence of steps to be carried out by objHC when
replacing objA with objB (as per the eager replacement strategy).

Sequence of Steps

1. Deactivate objA
2. Suspend the execution of objA
3. Create objB
4. Transfer the state of objA to objB
5. Activate objB
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If objA is not running at the time of replacement then step 2 is not required.
Below we discuss the implementation of the above-mentioned steps.

Step 1: Deactivate objA: First, on receiving an indication from the the CRS
about dynamic replacement, objHC deactivates the reference to objA. This en-
sures that the calls made to objHC during the dynamic replacement process are
not forwarded to objA, and rather wait within objHC.

Step 2: Suspend the Execution of objA: Suspending the execution of objA im-
plies suspending all the calls currently executing on objA. But before actually
suspending a call executing on objA, it needs to be ensured that the execution
of the call has reached a safe point where it can be resumed correctly by objB,
at the end of dynamic replacement. And for this, the safe points need to be
explicitly defined in the body of objA (more discussion on this follows later).

After deactivating the reference to objA (step 1), objHC sets a signal for the
suspension of objA. At every safe point, each call executing on objA checks if
a signal for the suspension of objA has been set. If such a signal is set, then
an exception is thrown on this call, to be eventually caught by objHC. The
information about the safe point where the call is suspended is also passed
to objHC along with the exception. After catching the exception, objHC needs
to take necessary actions like reinvoking the call on objB after the completion
of the dynamic replacement process. This time the information about the safe
point where the call was previously suspended is passed as an argument while
reinvoking the call, to enable objB to resume the execution correctly. For this,
the methods of objB should be able to accept an additional argument of the
type SafePoint (during normal forwarding of calls by objHC, the value of this
argument will be null).

This step is over when all the calls executing on objA have returned (either
normally or after being suspended) to objHC.

Step 3: Create objB: After setting the signal for the suspension of objA, objHC
creates an instance of the new adaptable class (passed by the CRS), i.e. objB
(the creation of objB may take place while step 2 is still on, i.e. during the time
all the calls executing on objA return to objHC).

Step 4: Transfer the State of objA to objB: Once all the calls executing on objA
have returned to objHC (at the end of step 2), the state of objA is transferred
to objB at the initiation of objHC.

For transferring the state, i.e. storing the state and loading the state, every
dynamically replaceable component needs to provide appropriate storeState
and loadState methods. This is because state parameters (names and types)
may vary across the old and new components, which means that the semantic
information necessary for state transfer can be provided by the respective com-
ponents only. The storeState method of objA may need to convert its own
component-specific representation of the state into a standard representation
(standard for the corresponding set of alternative classes), which the loadState
method of objB understands and may again convert into its own component-
specific representation.
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Step 5: Activate objB: Finally, objHC sets objB as active adaptable class instance
(objA can now be garbage collected).

Now the execution can continue on objB.

Discussion: The description above assumes that the new component requires
the state of the old component to be transferred to it, and also requires the
information about the safe points where the calls were suspended, in order to
continue the execution from where the old component left. However, in practice,
either or both of these requirements can be relaxed, depending on the properties
of the concerned components (on the other hand, it ultimately rests on the
capability of the new component itself to continue the execution correctly, even
if both these requirements are satisfied).

That is, in some cases, there may not be a need for passing the information
about the safe points to the new component, e.g. if the state transferred to the
new component provides enough information to resume the execution correctly.
And in rather extreme cases, there may not be a need for transferring the state
of the old component to the new component, e.g. if the new component is specif-
ically designed to recover from a state loss, though it will most likely result in a
degraded performance.

There can be some components that can be suspended abruptly, e.g. if the
new component provides an entirely different functionality and is going to be-
gin its execution from its initial point of execution (as typically in response to
a change in contextual information). This means that every point of execution
in the old component is in effect a safe point. From the implementation per-
spective, this implies that there is no need for explicitly defining safe points in
such components, and the already executing calls can be simply suspended by
throwing exceptions abruptly in step 2 above.

Queuing the new calls made during the dynamic replacement process within
the Handle class instance, as well as the calls that were suspended and returned
to the Handle class instance, and invoking these calls at the end of dynamic
replacement, help maintain the integrity of the interactions among components.

Next we show that eager replacement may not be viable for some components,
leaving lazy replacement as the only option.

Consider an eager replacement where the state of the old component needs
to be transferred to the new component, and the old component is running
at the time of replacement. One of the necessary conditions for ensuring the
validity of this replacement is that the state transferred gets transformed into a
reachable state of the new component. This will most likely not be possible at any
random point of execution of the old component, but probably at some specific
points. Such points of execution of the old component that ensure that the state
transferred gets transformed into a reachable state of the new component are
referred as valid-change points. If the state transferred at any random point
of execution is ensured to get transformed into a reachable state of the new
component, then it implies that every point of execution of the old component
is a valid-change point.

We know that in the eager replacement strategy the state is transferred at
the safe point where the last of the calls executing on the old component is
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suspended. Now to ensure a valid replacement, this safe point has to be a valid-
change point. And since we cannot predict in advance at which safe point the last
call will be suspended, we can say that every safe point has to be a valid-change
point.

However, we argue that there is no guarantee that a valid-change point exists
in an arbitrary component to be replaced (not counting the control points just
before the initial point and just after the last point of execution, as they are not
practically very helpful).

To support our argument, we refer to the results provided by Gupta et. al. [3]
in the context of a runtime change in software version. They define a valid change
as the one in which the state of the old software version gets transformed into
a reachable state of the new software version. They also show that locating the
points of execution where a valid change may be guaranteed is in general unde-
cidable, and approximate techniques based on data-flow analysis and knowledge
of application developer are required. This effectively implies that there may not
exist any point of execution in the old software version that may guarantee a
valid change.

This result can be directly extended to the case of dynamic replacement of
components, to support our argument that there is no guarantee that a valid-
change point exists in an arbitrary component to be replaced.

If a component does not contain any valid-change point, then the possibility
of defining safe points in the component is automatically ruled out. This, in
turn, renders eager replacement unachievable for such components, leaving lazy
replacement as the only option.

With lazy replacement, the component to be replaced is certainly not run-
ning at the time of replacement, and thus the state to be transferred refers to
the persistent state of the component, in contrast to the transient state for a
component that is running at the time of replacement. From requirement 3 (Sec-
tion 3), we know that the persistent state of the old component when transferred
to the new component is automatically a reachable state of the new component.

For lazy replacement, the replacement process discussed before can be suit-
ably modified in a straightforward manner. In any case, the implementation of
either of the two strategies is localized within a Handle class instance and the
corresponding dynamically replaceable components.

4.2 Performance Evaluation

A prototype, based on the CASA framework, has been implemented in Java,
and the results have been encouraging. We have been able to demonstrate the
dynamic adaptation features of the CASA framework, at a minimal performance
cost. A detailed overview of performance evaluation of the prototype is given
in [4]. Below we present some of the indicative results.

During normal operation of an application, the only performance overheads
are due to using an additional level of indirection when accessing a dynamically
replaceable component through a Handle class instance, and for checking a signal
for component suspension at every safe point within the component code. Both
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these overheads were found to be quite insignificant – in the order of a few micro
seconds.

The performance overhead during dynamic replacement of components varied
widely depending on the number of components to be replaced – for the test
results, the values were 2–7 ms for a single component and 25–100 ms for twenty
components, depending on the processor speed (assuming no delay for the calls
executing on the old components to reach their respective safe points).

The overhead for the state transfer between components was found to be
very small (in the order of a few micro seconds), while the size of the state to
be transferred did not have much influence on the results.

The frequency of safe points in a component code has an obvious positive
impact on the swiftness of dynamic replacement. Since the overhead due to each
safe point during normal operation is negligible (a couple of micro seconds),
it is recommended to define safe points quite frequently in every dynamically
replaceable component, if possible.

5 Related Work

Over the last few years, some approaches have been proposed for software adap-
tation using dynamic change in application components. Rasche and Polze [14]
present an approach for dynamic reconfiguration of component-based applica-
tions for the Microsoft .NET platform. This approach uses a transaction-based
component model to decide the appropriate timing and order for reconfiguration.
However, dynamic reconfiguration here implies adding new components, remov-
ing old components, changing the connections among components, or changing
the component attributes, while it does not provide means for dynamic replace-
ment of components involving state transfer etc.

The Accord framework [7] enables a dynamic change in application behavior
according to the rules associated with every application component. However,
with this approach, the interactions between application components need to be
defined in terms of rules associated with the corresponding components, in order
for these interactions to be changeable at runtime by changing the corresponding
rules. Since the number of potential interactions between application components
can be quite large, the number of possible rules can be exponential, making
the rule management quite complex and inducing performance overhead due to
execution of all these rules at runtime.

Some more work has been done on runtime software evolution, which has a
close bearing with the software adaptation using dynamic change in application
components. Oreizy et. al. [12] provide a software architecture-based approach
for runtime software evolution, and discuss dynamic recomposition of applica-
tion components at the architecture level. In this approach, the components
interact with each other only through the connectors that mediate all compo-
nent communications. This makes it possible to alter a component composition
by changing the component bindings of the connectors at runtime. The role of
connectors here is similar to the role of Handle components in CASA, though in
CASA only the dynamically replaceable components need to be accessed through
Handle components.



Runtime Adaptation of Applications 137

Dynamic Java classes [8] provide a generic approach to support evolution
of Java programs by changing their classes at runtime. This approach shares
the same goals as our implementation approach. A drawback of this approach,
however, is that it takes a much harder way of modifying the JVM to implement
dynamic replacement of classes. Using a customized JVM may result in reduced
portability, and may eventually restrict the usage of this approach. Similarly, the
approach of dynamic C++ classes [5] allows a version change of a running C++
class. However, with this approach, once the version of a class has been changed,
only the new instances created after the version change belong to the newer
version. The already created instances belonging to the older version are either
allowed to continue till they expire normally or they are destroyed abruptly,
while no attempt is made to replace these instances with ones belonging to the
newer version. Clearly, such an approach is not suitable for our purpose.

6 Conclusion and Future Work

The CASA framework enables dynamic adaptation of applications in response
to changes in their execution environment. With a view to meet adaptation
needs of a broad and diverse set of applications, the CASA framework supports
dynamic adaptation at various levels of an application – from lower-level services
to application code. In this paper, we discussed the implementation issues related
to the adaptation of an application by recomposing its components dynamically,
as supported in the CASA framework.

An underlying presumption in realizing application adaptation through dy-
namic recomposition of components is that the application provides alternative
component compositions for different states of the execution environment. The
cost of developing these alternative component compositions would be mitigated
by the amount of reuse of the components constituting these compositions. We
have also presumed that the correctness and completeness of alternative compo-
nent compositions is ensured by the application developer at the time of com-
posing these compositions. We envisage that appropriate tools to help ensure
this would be available to the application developer.

In the near future, we intend to identify dynamic adaptation needs of dif-
ferent kinds of applications executing in dynamic environments. Based on this
information, we will verify which of these adaptation needs are met effectively
by our current approach and where modifications or extensions will be required.
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Abstract. In this paper, we discuss the necessity of new observation and control
structures for organic computing systems starting from the basic contradiction be-
tween bottom-up behaviour and top-down design. An Observer/Controller archi-
tecture serves the purpose to keep emergent behaviour within predefined limits.
As an illustration, a framework for reconfigurable protocol stacks is introduced,
which contains an agent-based monitoring framework as well as a reconfigura-
tion manager. After describing a TCP/IP protocol stack implementation, based
on the framework, similarities between the introduced framework and the Ob-
server/Controller architectural pattern will be pointed out.

1 Introduction and Outline

1.1 Organic Computing

Due to the increasing complexity of today’s software systems, new ideas for the de-
sign and management of those systems have to be found. Most software architects still
design their systems following the top-down approach, trying to master this increasing
challenge. While a good part of software complexity stems from once well-meant ideas
to tackle the complexity like reuse of object oriented components, a considerable part
of the complexity is caused by the general attitude of engineers to keep control of all
details of the system under design.

To ease this potentially dangerous situation, organic computing tries to mimic key
phenomena observed in nature for computer systems, such as self-organisation, selfcon-
figuration, self-healing, self-protection, self-explanation, and context awareness. Thus,
an organic computer is a technical system, which adapts dynamically to the current con-
ditions of its environment [1] without being exactly programmed to certain environment
changes.

An exciting example of an organic system is disclosed by a look into the human
brain. Low-level structures (brain stem), which react on sensory inputs thus, imple-
menting a subconscious stimulus-response pattern, can be considered as an execution
function.

Higher-level structures (e.g. the limbic system), observe and manipulate this exe-
cution function in several ways (especially emotions and regulation of visceral motor
activities) [2]. Initial discussions on organic computing systems [1, 3] suggest that a
two-level architecture with a low level execution and a higher-level control layer repre-
sents a general pattern present in natural as well as artificial organic systems. We call
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this architectural pattern Observer/Controller architecture. It will be described in this
paper and illustrated with an example from telecommunication research.

1.2 Software Defined Radio, Mobile Adaptive Terminals

This paper will introduce a software framework for organic protocol stacks of mobile
terminals, so-called software defined radio (SDR) devices. Therefore, a short introduc-
tion to SDR will be given in this section.

A software-defined radio is a system, which uses software for the modulation and
demodulation of radio signals [4]. This normally includes the RF front end, the ana-
logue/digital as well as the digital/analogue converters, and the base band processing
(BB). In our research, we understand SDR in a much broader sense. An adaptive mobile
terminal contains not only a reconfigurable radio system but also a reconfigurable op-
erating system, reconfigurable protocol stacks, middleware, services and applications.

The idea of reconfiguration on software levels yields higher flexibility by better re-
source utilisation. For example, an adaptable mobile terminal is able to choose from
different implementations of a multimedia CODEC, depending on the current resource
situation. Such a terminal will favour a less energy consuming hardware CODEC when
the battery power is getting low, whereas a CODEC implemented in software is pre-
ferred, when the availability of processing power in dedicated hardware (DSPs, FP-
GAs, etc.) is crucial and when there is plenty of CPU power at hand. In this paper, we
will focus on the protocol stack software as a reconfigurable software system, which
will benefit from organic computing ideas. Such a protocol stack can be used in SDR
devices and other mobile terminals as well.

1.3 Outline

First, we want to introduce the Observer/Controller architectural pattern. We will be-
gin with a short characterisation of the phenomenon of emergence and will point out
the arising basic contradiction of top-down design vs. bottom-up development, which
we will run into if we try to exploit emergence in technical systems. Then we will
show how we can escape this contradiction, basically by combining creative bottom-up
mechanisms with a mechanism which enforces top-down constraints.

An example for a complex software system – a reconfigurable protocol stack – will
be used to explore analogies to organic feedback systems. We will describe the intro-
duced protocol stack framework, its fundamental components, and exemplary protocol
stack implementations.

Having described the theoretical background and the system implementation, we
will review the implementation of the Observer/Controller structure. We will end up
with implementation results, conclusions and an outlook on future work.

2 How Can We Control Emergence?

2.1 Self-organisation

Properties of complex systems have been investigated predominantly with the help of
natural systems like dissipative structures [5], autocatalytic cycles [6] or ant hives. Lans-
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ing and Kremer [7] have analysed the organisation patterns of rice growing on the is-
land of Bali. Their assumption of a locality-based co-adaptation coordination algorithm
(“Do as your best neighbour does!”) leads to a simulated distribution of cropping pat-
terns very similar to the one observed in reality. Ilya Prigogine [5] has investigated
dissipative structures – chemical autocatalytic reactions far from thermal equilibrium –,
which show self-organisation effects of high aesthetic appeal. Even technical systems
like the Internet have been shown to reveal self-organisation patterns. A visualisation
of communication patterns reveals a surprising degree of order although the Internet
has developed without an explicit master plan. It has been shown that these traffic pat-
terns are subject to the so-called small world effect [6, 8, and 9] which seems to be
characteristic for complex communication systems like the brain.

Another experiment, which has been carried out with miniature robots as well as
in simulations is that of the “candle movers”. A robot is able to move one or two tea
candles. If it encounters more than two it stops, turns in an arbitrary direction and moves
straightly until it finds the next candles and so on. Intuitively, a random distribution of
candles on a floor subject to a collection of randomly moving robots should result in a
random distribution of candles. The experiments, however, show consistently that under
these conditions the candles are assembled into a very small number of heaps. This is a
nice example of very simple local rules leading – in cooperation with many autonomous
components – to a global pattern exhibiting higher degrees of order.

Systems capable of self-organisation seem to have the following properties: They
consist of autonomous processes, which use local information (context) for local be-
haviour. They develop by evolutionary mechanisms (recombination, selection, and mu-
tation), using trial and error. This implies large populations of elements. The stability
of such systems seems to increase with an increasing interconnectedness [10].

2.2 Emergence

A central notion of self-organising systems is the concept of emergence. Emergence
is a property of our world. The development from chaotic starting conditions towards
systems exhibiting higher degrees of order can be described as an effect of emergent
behaviour. Emergence is defined as a property of a total system, which cannot be de-
rived from the simple summation of properties of its constituent subsystems. Emergent
phenomena are characterised by (i) the interaction of mostly large numbers of individu-
als (ii) without central control with the result of (iii) a system behaviour, which has not
been “programmed” explicitly into the individuals (www.beart.org.uk/Emergent/).

An example of an emergent system property is the resonance frequency of a reso-
nant circuit. It is a system property, which cannot be explained in terms of the properties
of a single constituent. It develops from the dynamic cooperation of the capacitor and
the inductivity.

Emergent behaviour in a complex technical system is an ambivalent property, espe-
cially if this system has safety-critical tasks. We must develop strategies, which leave
sufficient degrees of freedom for self-organisation while keeping control over the emer-
gent system to avoid unwanted results. This requirement leads to the problem of con-
trolled emergence as discussed below. But how can we build emergent systems in the
first place? There are quite a few “toy” systems showing creative behaviour in com-
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puter simulations. Examples are Tom Ray’s Tierra system [11], Karl Sims’ “Virtual
Creatures” [12], Lindenmayer Systems [13], or “Woods”-like environments [14]. Char-
acteristic for these algorithms is the evolutionary or genetic paradigm: It works with
large populations of individuals (representing solutions), random mutations, recombi-
nation and a selection mechanism based on an objective function. Due to their low
speed, genetic algorithms [15] and similar approaches like simulated annealing or fuzzy
classifier systems [16] have been used so far predominantly for off-line optimisation. It
is a topic of future research to enable such algorithms to run under real time conditions
and with restricted resources.

2.3 Top-Down vs. Bottom-Up

The classical top-down design process is based on the assumption that the developer is
in principle able to predict all possible system states. In order to achieve this goal, the
design process is organised strictly hierarchically. It consists of a sequence of modelling
steps starting with a high level specification leading through a number of refinements
finally to a model, which can serve directly to control a manufacturing machine or gen-
erate executable code. Today’s technical systems, however, begin to show complexities
to such an extent that a complete prediction becomes impossible.

Emergent behaviour reflects bottom-up constraint propagation. In the candle mover
example, it is not possible to predict the exact positions of the robots or the candles but
we get some similar kind of order every time we run the experiment. From the technical
perspective it would be highly desirable to be able to predict more exactly the final
outcome, in other words: We would like to be able to describe the relationship between
local and global behaviour.

The top-down procedure is at the very heart of the engineering paradigm: We (the
designers) set the goals, which have to be reached by the technical system. It is not
very realistic to expect a collection of metal parts to assemble into a Mercedes car!
This means that the exploitation of emergence within technical systems leads to a basic
contradiction, namely the requirement of “controlled emergence”. It is not clear today
how controlled emergence can be realised but the Observer/Controller structure is a
possibility.

2.4 Observer/Controller Architectures

The solution seems to be in the middle between pure top-down and pure bottom-up. In
future, we expect a gradual increase of the degrees of freedom, which a technical system
has during run time. The behaviour of a complex system will then be a combination
of preset objectives and constraints, as defined by the system developer and adaptive
“islands” where the system is allowed to make its own decisions. In order to develop
such adaptive systems, we must introduce new system architectures, which allow the
replacement of hard coding by goal setting (or motivation). This means, however, that
our system now runs under the assumption of best effort and it can deliver sub-optimal
results or even make mistakes. Hence we must take provisions to guide the system
towards the optimum and guarantee that certain error conditions can never occur.
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A basic structure supporting such a pattern is the Observer/Controller architecture. It
borrows from a very simplified analogy to the human brain [17], where we find low level
“circuits” (the brain stem) with the task to immediately react to sensory input (especially
to pain in order to escape dangerous situations). These reactions occur subconsciously.
Conscious decisions, generated by the neocortex, are filtered by certain areas of the
interbrain – with the limbic system adding the emotional colouring –, before they are
transformed into motion or other reactions by the brain stem. This filtering constitutes
the influence of emotions on our actions. In case of a blocking decision by the limbic
system the instruction from the neocortex is not executed.

In a technical system the Observer/Controller plays the role of the limbic system: It
observes the external environment via the sensory input as well as the internal behaviour
of the low level execution unit and manipulates it in several ways, as we will discuss
below. The usage of Observer/Controller structures can be regarded as the introduction
of emotions into technical systems. A computer might then decide (by means of its
“limbic system”) that it will not act as commanded by the user! Here, a word of caution
seems appropriate: In a technical system we expect the goals to be set by the user (i.e.
top – down) even if the exact procedure of execution is left to a creative lower level
mechanism. In the brain it is not at all clear if the neocortex, the seat of consciousness,
is the (single) origin of the commands. There seems to exist evidence that the brain stem
could be the active part while the neocortex is asked for a second opinion from time to
time [17].

The basic Observer/Controller structure is shown in Figure 1. In addition to the low
level execution unit responsible for the working level stimulus/response mechanism,
we have now a higher level Observer/Controller. The observer part receives input from
the environment as well as from the execution unit (e.g. data about the present load
conditions). The controller compares the situation reported by the observer to the goals
set by the user and reacts by reconfiguring the execution unit.

In order to discuss this mechanism in more detail, we have to introduce a few terms:

• iStructure and iBehaviour mean the internal relationship of the components of a sys-
tem and their procedural behaviour in time. An example is the composition of a
CMOS inverter from an n-channel and a pchannel transistor (iStructure) and their
cooperation in terms of electrical voltages and currents (iBehaviour).

Fig. 1. Basic Observer/Controller structure. The controller intervenes by changing the behaviour
of the execution unit and/or by setting filter functions in the guard to prevent erroneous outputs.
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• eBehaviour (external behaviour) means the abstracted view from the outside on this
system. In the above example of the inverter circuit the eBehaviour could be a logical
view with one input, one output and the two states 0 and 1.1

Fig. 2. Fixed system: The embedded system reacts to external stimuli. No modification of its
external behaviour (eBehaviour) is possible at runtime. Internal structure and behaviour are fixed.

A conventional embedded system (such as an ABS2 controller) shows a fixed exter-
nal behaviour (eBehaviour in Figure 2) based on a fixed internal structure and specified
internal behaviour (iBehaviour, iStructure): The ABS controller receives sensory input,
processes it and reacts through actuators.

In a first step towards adaptivity we allow an external controller (possibly the hu-
man designer) to modify the eBehaviour by changing internal parameters of the system
(Figure 3).

Fig. 3. Adjustable system: External (human) controller sets internal parameters such that the de-
sired eBehaviour is reached.

Instead of modifying a large number of those parameters, it would be more desirable
for the (human) external controller to declare or specify the eBehaviour on an higher
abstraction level and leave it to an internal controller to translate those high level goals
to low level parameter changes (Figure 4). These goals are comparable to motivations
if we regard our technical system as an autonomous “animal”. Now it is the task of the
internal controller to permanently check the consistency of the current goals, the state
of the environment and the internal state of the embedded system (like error or over-

1 There is also an external structure (eStructure), which we will neglect for simplicity.
2 Anti Lock Braking system.
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Fig. 4. Constant goals (homeostasis) are maintained by the Observer/Controller.

load conditions). In analogy to living systems we can speak of homeostasis3. This adds
an additional higher level feedback loop to the system, in addition to the lower level
productive feedback loop responsible for the actual function (e.g. the ABS system).

It remains largely open at his point in time how we can formulate the high level
goals and how they are transformed into low level structural and behavioural changes.
A promising approach to this problem is based on the software technology of design-
bycontract and assertions (as introduced by [18]). Assertions are if-then rules inserted
into code. The if-part can contain logical (a ≤ 5) or timing (event2 @ 5 ms after event1)
conditions. The violation of an assertion leads to a reaction as specified in the then-part.
The reaction could simply be a call to the observer, which takes appropriate action. The
assertion mechanism has been shown to be very useful especially in combination with
system simulations [19] since in a simulated virtual prototype, we can instrument not
only the software with assertions, but also the modelled hardware.

A second solution to the control of emergent mechanisms is the introduction of a
guard. A guard receives the output from the adaptive control mechanism and filters it
according to rules set by the Controller. An example for such a filtering action would
be the detection of the creative attempt of a learning traffic light controller to set all
traffic lights to “green”. A reinforcement learning mechanism will probably punish this
attempt but in a real world situation we must guarantee that such dangerous outputs are
not realised.

The system behaviour – when following the Observer/Controller architectural pat-
tern – will be a combination of preset objectives and constraints as well as adaptive
“islands” where the system is allowed to make its own decisions (and errors!).

To implement an organic system, hard coded behaviour must be replaced by fuzzier
goal settings, which describe the overall systems motivation leading to additional de-
grees of freedom. This should lead to a satisfactory behaviour even under unprecedented
conditions but it may also yield suboptimal results or even allow the system to make er-
rors. For the research of organic computer systems, an observable system described

3 Homeostasis is one of the most remarkable and most typical properties of highly com-
plex open systems. A homeostatic system (an industrial firm, a large organization, a cell)
is an open system that maintains its structure and functions by means of a multiplicity
of dynamic equilibriums rigorously controlled by interdependent regulation mechanisms.
Such a system reacts to every change in the environment, or to every random disturbance,
through a series of modifications of equal size and opposite direction to those that cre-
ated the disturbance. The goal of these modifications is to maintain the internal balances
(http://pespmc1.vub.ac.be/HOMEOSTA.html).
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by internal structure and behaviour must be found and extended with observer and
controller components. The following sections will introduce a reconfigurable protocol
stack architecture as exemplary execution unit of an organic computer system. Subse-
quently it will be shown, that an agent-based monitoring system is capable of observing
the protocol stack structure and behaviour. Furthermore, the described reconfiguration
component implements the controller entity as projected in the Observer/Controller ar-
chitectural pattern.

3 Reconfigurable Protocol Stack Architecture

The following section describes a reconfigurable protocol stack architecture similar to
architectures like [20], but specially tailored for mobile terminals [22] and enhanced
with ideas from organic computing. After a general overview, basic framework com-
ponents will be described, enabling the design and implementation of actual protocol
stack instances, which in turn are supervised by an agent-based monitoring framework.

3.1 Overview

Modern mobile terminals are supporting a huge number of various communication stan-
dards such as GSM, GPRS, EDGE, WLAN, Bluetooth, and so on. To manage the in-
creasing software complexity, new approaches for designing such complex software
systems and for managing such systems during run-time have to be found.

Supported by the depicted framework approach, the software designer has an exten-
sive library of components and modules at his hands to choose from whilst implement-
ing actual protocol stack software. The experience gained so far shows that building
protocol stacks from a component library specially tailored for protocol stack design,
eases the complex implementation task because the implementer can concentrate on
protocol stack specific parts or components. Furthermore, a protocol stack library of
generic components shortens implementation time as well as debugging time.

During run-time, the framework offers the ability to exchange protocol stack mod-
ules on the fly without loosing network connection. Protocol stack modules in the por-
trayed framework are much more fine granular than e.g. kernel modules of the Linux
kernel. This offers a much higher degree of reconfiguration options of the protocol
stack structure. For example, in the proposed TCP/IP implementation, there are only
four layers. Assumed that there are three different implementations to choose from, this
leads to 34 = 81 possible configurations. In future, reconfiguration will be supported
on class level, yielding a barely limited number of possible configurations. In addition,
to fix errors or just to update to a newer version, protocol stack modules even can be
downloaded from a device management server situated somewhere in the network.

3.2 Protocol Stack Framework

The protocol stack framework, as shown in Figure 5, consists of three major compo-
nents. The framework itself, providing management and supervision functionalities,
the component library, providing the protocol stack modules and the protocol stack in-
stances itself, executing in the framework.

The following paragraphs describe the major framework components in detail.
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Fig. 5. Software architecture of protocol stack framework.

3.2.1 Framework Component
The protocol stack framework bundles all of its management and supervision function-
ality in the framework component. The main framework component is the configuration
and control manager. The configuration manager parses XML descriptions of protocol
stacks. A protocol stack description is a graph consisting of nodes (modules, layers)
and edges (connectors). Layers have to implement defined data and control interfaces
to become exchangeable. Furthermore, the configuration manager decides which pro-
tocol stack will be constructed from the textual descriptions to satisfy the applications
request for a certain network connection. The matching protocol stack for the requested
network connection is matched by using QoS4 parameters that an application requests
by opening a network socket.

Applications running on top of the protocol stack use a socket interface (similar to
the BSD socket interface [21]) to communicate with the network. For protocol stack
internal message passing, the framework offers data message passing functionality as
well as a mailbox system for control message passing between protocol stack layers.
Because the framework uses the thread-per-message model for internal data message
passing [22], thread management is another major functionality implemented by the
protocol stack framework.

Another special component of the framework is the monitoring component, which
will be described in detail in Section 3.4.

3.2.2 Library
The framework library provides generic classes for basic tasks, which are carried out
in every protocol stack, implemented for the framework. Provided classes range from
simple byte arithmetic/manipulation, checksum, fragmentation classes up to data and
control message passing classes. Further to the generic classes already provided in the
library, specific protocol stack classes can be stored in the library or downloaded over
the air from a configuration management server as well and can be subsequently used
in protocol stack configurations as well.

4 Quality of Service.
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3.2.3 Protocol Stack Instances
Protocol stack instances, as created by the configuration manager, may contain any
combination of modules interconnected by defined connectors. Due to the fact, that
traditional protocol stacks are implemented in native programming languages such as
C and C++, native protocol stack modules are supported by implementing a module
wrapper. Such a wrapper is a Java class implementing the necessary data and control
interfaces, connecting the native implementation to the stack framework by JNI5. A
number of protocol stack configurations, some of them contain only Java modules, some
of them contain Java modules and wrapped native modules, have validated the described
mechanism.

3.3 Protocol Stack Examples

As mentioned before, protocol stack instances are built from generic components found
in the frameworks library as well as protocol stack specific components. The protocol
stack architecture has been validated with a number of TCP/IP protocol stack configu-
rations. Figure 6 shows an example TCP/IP protocol stack configuration.

The example TCP/IP protocol stack consists of four layers derived from generic
library components (Layer class). The partitioning is more or less carried out according
to the ISO OSI seven-layer model [23]. There is a dedicated layer for each of the TCP/IP
protocol suite protocols. The application communicates with the protocol stack using
a BSD socket interface. The framework “fingers”, between adjacent layers, provide
monitoring and supervision capabilities, which help in detecting degradation in network
performance or rogue terminal6 behaviour as achieved by the agent-based monitoring
component.

Fig. 6. TCP/IP protocol stack as configured by the protocol stack framework.

5 Java Native Interface.
6 The term rogue terminal stems from computer terminals or ID card terminals becoming rogues.

They try to steal resources (i.e. network capacity, bandwidth), confidential information (i.e.
passwords, encryption keys), or try to harm the network, user or equipment.
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Various TCP/IP stack configurations have been validated by prototype implemen-
tations. The reconfiguration of protocol stack instances has been exemplarily validated
by exchanging the ARP7 layer during run-time. The ARP layer exists in two imple-
mentations: A pure Java implementation and an ARP implementation in C (wrapped
in Java), which have been exchanged during run-time without loosing the applications
open socket connection.

The reconfiguration process has been triggered by the agent-based monitoring
framework, which will be described in the following section.

3.4 Agent-Based Monitoring

The main characteristic of an organic computer is its ability to adapt dynamically to
current conditions or its environment [1]. For that, a technical system has to contain a
component, which monitors the systems current internal structure and behaviour. For
the protocol stack framework, this task is carried out by the agent-based monitoring
component as seen in Figure 7.

Fig. 7. Agent-based monitoring software architecture.

The main component inside the agent-based monitoring framework is the so-called
agent concentrator. As shown by Tarkoma and Laukkanen in [24], agents do not have
to be heavy-weight, they can be suitable for resource-constraint mobile devices as well.
By dynamically concentrating one or more light-weight agents in a networked man-
ner, the characteristic features of agents, such as autonomy, adaptiveness, collaborative
behaviour, and mobility [25] can be utilised for processing observed structure and be-
haviour information, gained from the currently installed or executing protocol stack
instances. In the depicted protocol stack framework, the agents observe communica-
tion and thread status information (internal behaviour) such as sent and received pack-
ets/bytes and number of send/receive threads currently executing in the framework.
Furthermore, the agents can request the current protocol stack configurations from the
configuration manager (internal structure) to decide how they have to be reconfigured.

7 Internet Address Resolution Protocol as described in RFC 826 (Request For Comments 826,
Internet Standards).
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Observable internal protocol stack structure or behaviour information is produced
by socalled software probes, provided by the framework, and inserted into executing
protocol stack instances. The agents in turn evaluate the information they have sub-
scribed for by the observer pattern (see Section 4.1 for details).

For implementation of the internal behaviour, we recommend a finite state machine
model. For that, the monitoring agent framework provides generic agent, state and tran-
sition classes, as well as classes, which can host rule-based decision-making algorithms.
This approach is lightweight enough to allow multiple agents to execute on mobile ter-
minal platforms.

The intelligence of the reasoning system is currently captured in rules that con-
tain conditions and actions. Because rule-based systems are limited in their level of
intelligence, smarter reasoning algorithms like classifier systems [26] can be easily in-
tegrated into the connected agent’s finite state machine approach. Even external agents
(provided by third parties) can be integrated by over-the-air download/synchronisation
from a device management server.

The protocol stack framework configuration manager component provides a recon-
figuration interface for reconfiguration actions, issued by the agent-based monitoring
system. Currently executing protocol stack instances can be tuned (e.g. change param-
eters, etc.) or even structurally reconfigured (e.g. exchange of protocol stack layer im-
plementations) during run-time. Completely new protocol stack configurations can be
requested as well, in order to optimise network communication performance or to ac-
complish the user preferences better.

4 Observer/Controller Implementation

As mentioned in Section 1.2, a closed loop control pattern, consisting of a controlled
process, sensors, an observer and a controller, can be typically found in organic com-
puting systems. The main components of the protocol stack architecture can be mapped
quite naturally onto Observer/Controller entities.

An executing protocol stack instance can be regarded as observed process. The anal-
ysis of protocol stack structure and run-time information, such as parameters, stack sta-
tus, statistics, configuration, etc., will be carried out be the agent concentrator compo-
nent and its intelligent agents. Whenever the multi agent system concludes, that the pro-
tocol stack’s current structure or behaviour is not optimal, it informs the protocol stack
framework configuration manager (controller component). The configuration manager
in turn can then change configuration, parameters, and structural description of the ex-
ecuting protocol stack instance.

Although the user is still in control of the protocol stack framework by issuing
abstract goals, motivations, or preferences, such as QoS requirements like bandwidth,
accepted costs, etc., the organic computing system has taken over the fine-tuning of
concrete protocol stack configurations and their settings from the designer or user of
the system.

4.1 Observation: Implementation for Monitoring Agents

As seen in the last section, the agent concentrator component of the protocol stack
framework implements the observer component of the earlier introduced Observer/Con-
troller architectural pattern.
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Fig. 8. Observer pattern as implemented by ThreadProbe and Thread-Agent.

The concrete monitoring agents, accommodated in the agent concentrator, are part
of the observer pattern [27] for getting system status information from software probes.
As seen in Figure 8, the observable object ThreadProbe is inherited from the abstract
SoftwareProbe class. Observers like the ThreadAgent (inherited from the abstract Obser-
ver class) can subscribe to SoftwareProbe objects by calling the SoftwareProbe.attach()
method. If the information stored in a SoftwareProbe e.g. ThreadProbe changes, all
attached Observers will be informed by calling their update() method.

The use of the observer pattern eases the attachment and detachment of monitoring
agents to software probes and reduces the information distribution complexity. Further-
more, monitoring agents again can become observable objects, allowing other agents to
subscribe to their processed information. This mechanism is the foundation for building
complex multi agent networks inside the agent concentrator component for monitoring
the protocol stack instances.

4.2 Control: Implementation of a Configuration Manager

The controller component of the Observer/Controller architectural pattern is responsi-
ble for actually changing the processes internal behaviour and structure by issuing new
parameters or process configurations. In the depicted protocol stack architecture, the
reconfiguration manager component is responsible for tuning and configuring protocol
stack instances. In the current approach, the actual decision that a reconfiguration is nec-
essary is currently completely taken by the monitoring agents (observer). This leaves
only the execution of a reconfiguration to the reconfiguration manager (controller). The
reconfiguration manager consequently only implements the generation of protocol stack
instances from given protocol graphs, stored in the XML protocol stack descriptions.
Furthermore, the reconfiguration manager implements additional methods, which pro-
vide information about possible protocol stack configurations, and their properties to
assist the monitoring agents in their reconfiguration decision.

The Observer/Controller architecture pattern also allows splitting the decision-mak-
ing in a different way. The decision-making can be carried out completely in the con-
troller entity; mixed approaches are feasible as well.

5 Conclusion and Outlook

The concept of observers and controllers has been introduced in this paper. A frame-
work for reconfigurable protocol stacks and its agent-based monitoring framework have
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been portrayed. It has been shown, that the Observer/Controller architectural pattern is
a natural way of implementing an organic, self-monitoring, self-organising and selfcon-
figuring software system. Each major component of the protocol stack framework has
a matching counterpart in the Observer/Controller architectural pattern.

The current implementation status of the protocol stack framework shows, that the
framework approach is feasible and furthermore speeds up implementation for future
protocol stacks. Due to similarities in protocol stack design, the generic components
from the library are a welcome simplification of the implementation process. Specific
protocol stack functionalities were easily implemented based on the framework. The
prototype TCP/IP implementation has served as a good validation platform for the por-
trayed ideas and will serve in future as a valuable platform for further research.

The described agent-based monitoring implementation has demonstrated, that intel-
ligently controlled reconfiguration of a protocol stack is possible and will yield perfor-
mance advantages. It also decreases the user’s effort for performance corrections.

It has also become clear that the degree of freedom, which the “creative” part of the
reconfigurable stack architecture is given, should be increased. We are considering to
using a rule-based approach like fuzzy classifier systems for this purpose. But it must
also be clear that there exists a delicate balance between increased freedom and security
concerns. Future work in the protocol stack framework will comprise the integration of
more intelligent reasoning technologies into the agent-based monitoring. Accompany-
ing the work on the organic capabilities, the framework will be extended to support
more networking standards and protocols (Bluetooth, WLAN, etc.).
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Abstract. In this contribution we present a novel general model for adaptive
processors with organic features. We describe its basic principle of operation. The
adaptive operations that are possible with this model are thoroughly discussed
with respect to organic computing. The model allows runtime variations of the
type and number of functional units as well as variations of the communication
structure. Experimental results show that a processor implementing this model
can self-optimize its architecture for several diverse applications.

1 Introduction

Configurable Systems on a Chip (CSoC) are becoming more and more important in the
embedded systems market. The main reasons for their growing popularity can be found
in their cost effectiveness and flexibility. Mask costs will be very high in the future
due to the required high resolution [16]. CSoCs will be cost effective under these cir-
cumstances since they offer the possibility to implement multi protocol/multi standard
systems with a single chip and thus can be produced in much larger quantities. They
will be flexible since the reconfigurable part can be used to adapt the hardware to future
requirements that are unknown at the time of the initial development.

With CSoCs it will be possible to implement new IO functionality and peripherals
in an existing system. It will also be possible to have peripherals to increase the per-
formance (e.g. crypto accelerators), but the processor core itself cannot be changed or
enhanced. To overcome this problem, we introduce the AMIDAR class of processor
(Adaptive Microinstruction Driven Architecture). It is a novel model and architecture of
processors that can be adapted during runtime to the requirements an application and
exhibits several organic features. The main purpose of this contribution is to discuss
these organic features.

Although C as a programming language still dominates the development of em-
bedded software, the growing tendency to use Java as a programming language for
embedded systems makes this language an attractive object of study. Due to the code
shipping abilities of Java [10], it is most likely, that especially systems programmed in
Java will experience a shift in the requirements during their lifetime. Also, Java is used
in many computing systems with adaptive and organic features. One example is the
Caruso framework for Low-Power autonomic systems [2]. The most prominent reason
for choosing a Java bytecode processor to evaluate our model, is that Java bytecode can
be analyzed during runtime much easier than most other assembly languages and thus
it is the ideal basis for a dynamic hardware/software partitioning.

M. Beigl and P. Lukowicz (Eds.): ARCS 2005, LNCS 3432, pp. 154–166, 2005.
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1.1 Related Work

Hardware implementations of Java bytecode processors are available in a large number.
Yet, to our knowledge only the JEM-II processor can be customized for the application
requirements [1]. But in this case only new bytecodes can be introduced as microcode
sequences.

Also, recently some work has been conducted to build customized accelerators to
speed up the execution of Java bytecode [11]. In this case only a small part of the
bytecode execution is implemented in hardware and the main execution is done on a
conventional processor.

Other researchers have addressed (re)configurable processors in general. Some are
just parameterized RISC cores [3], while others are truly reconfigurable. They typically
depend on compile time analysis and generate a single datapath configuration for an
application beforehand [4, 5, 12]. Very few processors are really reconfigured at run-
time [15]. But even in this case, the configurations and the time of reconfiguration are
defined at compile time.

To the best of our knowledge, there is no general model for an adaptive processor.

1.2 Paper Outline

In the following section we will shortly discuss organic computing and its implications
on hardware design. In section 3 we will describe the general model of an adaptive
processor in detail. In section 4 we will then present the various adaptive operations
that are possible with this model. Section 5 introduces some simple heuristics that can
be used to adapt a specific architecture to applications. Experimental results for a Java
bytecode processor are shown in section 7. Finally, a conclusion and an outlook onto
future work are given.

2 Organic Computing

Organic computing [17] has recently been introduced as a means to structure computing
systems in a biologically inspired way. The key idea is to use mechanisms of natural
systems to enhance the robustness and ease the deployment of computing systems.

Organic computing shares several ideas with autonomic computing, an initiative
started by IBM in 2001 [13, 14]. Autonomic computing focuses on the self-X properties
of computing systems: self-monitoring, self-optimizing, self-protecting, self-healing,
self-configuring, . . .

Many of these properties will be required in future embedded systems, since we will
not be able to individually configure, monitor, repair and optimize the exploding number
of such devices in the future. We will not address all of those self-X properties in this
paper, since they have very different complexity. Self-monitoring, self-optimizing and
partly self-configuring are already part of the work presented here. We will also discuss
how other self-X properties can be incorporated in the AMIDAR processor model.

But organic computing is more than autonomic computing, since an inherent feature
of organic computing systems is the emergence of structure which was not plainly put
into the algorithms and structures of the system, but comes from unforeseen interactions
and mutual influences of components of the system.
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The biological model which inspired the work presented here is that of a bone. A
bone is reinforced in places where it is heavily loaded and is weakened in places where
the load is reduced. The emergent structure of a bone is optimized to the sustained static
load which is applied to the bone. If this load changes, the bone will adapt its internal
structure to the new load. In an evolutionary sense this can even mean to grow some
extra bones for new tasks.

3 Model

In this section we will describe how our model of an adaptive processor works in general
and we will also give a formal description of it.

It is useful to have a general model of an adaptive processor to identify and catego-
rize the elements of the architecture which are subject to adaptivity. This model should
achieve the following goals: The model must be general enough to express different
architectures, it should expose as much parallelism as possible, it should be applicable
for a simulation and it must be close to a hardware implementation.

3.1 Overview

Figure 1 shows the basic structure of an AMIDAR processor.
It consists of four main types of components: a token generator, functional units

(FU), a token distribution network and a communication structure. The token generator
is a specialized functional unit, which is always required. It controls the other compo-
nents of the processor by means of tokens. These tokens are sent to the FUs over the
token distribution network. The tokens tell the FUs what to do with input data and where
to send the results. Functional units can have a very wide range of meanings: ALUs,
register files, program and/or data memory, specialized address calculation units, etc.

Data is passed between the FUs over the communication structure. This data can
have various meanings: program information (instructions), address information or ap-
plication data.

Token Generator

Communication Structure

Token Distribution Network

FU1 FU2 FUn

Fig. 1. General model.

3.2 Definitions

A functional unit is a piece of hardware that executes a specific task in the processor.
Each FU has at most one output port1 and an arbitrary number of input ports. A func-
tional unit can be characterized by the values latency L, interval I and area A. The

1 In fact, the token generator seems to be the only FU that potentially doesn’t need an output port.
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latency specifies the time needed by the FU to complete a single operation, whereas the
interval specifies the time required between the start of two consecutive operations. The
area specifies the required amount of chip resources for this unit. There can be differ-
ent variations of FUs for the same task (latency optimized with minimal L, throughput
optimized with minimal I or area optimized). Typically, latency optimal versions will
not be throughput optimal and vice versa. Also, we assume that the consumed area is a
monotonic function with respect to the values L and I . This means that a decrease of L
or I always leads to an increased area. Other characterizations may be of interest like
energy consumption or energy efficiency.

A token is a 5-tuple: T = {UID, OP, T AG, DP, INC}. UID identifies the func-
tional unit to which this token belongs. OP specifies, which operation this FU has to
carry out on the tagged data. The TAG is used to distinguish different data that is sent
to the same FU. DP is the destination address, where the result of the operation is to
be sent. It consists of a UID and a port number, since functional units can have more
than one input port. INC is a boolean value, that controls the creation of the tag that
is sent out with the result data. If it is false, the tag is passed unchanged. Otherwise the
tag value is incremented. The meaning of this increment field is described in [6] and [9]
in more detail. UID(Ti) denotes the functional unit to which the token Ti is to be sent.
OP (Ti) denotes the operation that has to be carried out by token Ti. The meaning of
T AG(Ti), DP (TI) and INC(Ti) is analogous.

An instruction is a composition of an arbitrary number of tokens: Ins = {T1, T2,
. . . , TN}. The model itself doesn’t require an order of the tokens, but specific imple-
mentations may impose restrictions on the order in which tokens are distributed to the
functional units.

The communication structure consists of an arbitrary number of buses. A bus is a
pair of sets of ports B = (S, D) where S is the set of source ports driving the bus and
D is the set of destination ports which read data from the bus. S(B) denotes the set
of source ports driving bus B and D(B) denotes the set of destination ports of bus B.
Since input ports and output port of FUs are always disjoint, buses are unidirectional.

3.3 Principle of Operation

Program information (i.e. the instructions) is sent to the token generator. Now, the token
generator creates a set of tokens for this instruction and distributes them concurrently
to the functional units. A functional unit begins the execution of a specific token as
soon as the data ports have the data with the corresponding tag. Upon completion of
an operation OP (Ti) the result is sent to the destination DP (Ti). The tag that is sent
together with the result depends on INC(Ti). T AG(Ti) is used if it is false, otherwise
T AG(Ti) + 1 is used. An instruction is completed, when all the corresponding tokens
are executed. To keep the processor executing instructions, one of the tokens must be
responsible for sending a new instruction to the token generator.

This data driven approach has a number of advantages:

– It implies a maximum of parallelism, which is only limited by data dependencies
between consecutive instructions. It should be noted, that these dependencies can
only originate from application data (like user register values or stack data).
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– It does not rely on a particular timing of the FUs. Execution of an instruction will
work, no matter how long a single FU needs to complete its token. Also, it is not
necessary to know the structure of the communication network beforehand. Thus, it
can be changed during runtime without the need to reconfigure the token generator.
This is an ideal basis for the implementation of self-healing since it allows us to
use redundant communication structures.

– It allows overlapping execution of instructions, since the token generator can start
distributing tokens for more than one instruction. It only has to increment the tag
field of the token for each instruction to separate data belonging to different instruc-
tions.

– It allows the introduction of new FUs and instructions using these FUs. For this pur-
pose a small part of the token generator must be reconfigurable, to store the token
set for new instructions and to attach new FUs to the token generator (which are
not addressed by normal instructions). This allows us to implement a dynamic hard-
ware/software partitioning according to the current requirements. Thus, the proces-
sor can be self-optimizing.

3.4 Special Precautions for Dynamically Synthesized FUs

It may be necessary to establish a synchronization mechanism between the FU and the
token generator for dynamically synthesized FUs, like very data intensive FUs. Such
functional units often are deeply pipelined to achieve a high throughput, but the latency
on the other hand is also high. Other functional units waiting for the results may be
blocked resulting in critical deadlock states. For this reason it is desirable to block the
token generator from delivering new tokens until the FUs completed their calculations.
For this task we introduce a SYN token which will be sent to the specialized functional
unit. The token generator will not send further tokens until it receives the appropriate
data from the FU. The functional unit receiving the SYN token must send a correspond-
ing (to the tag inside the SYN token) data packet to the token generator. Now the token
generator will continue to issue tokens. The data sent to the token generator may be used
only to inform the token generator to continue its work, but may also be used to signal
special states of the functional unit, for instance an exception. The token generator now
can react on this special situation. It should be noted, that the usage of SYN tokens
eliminates the parallelism inside the processor. The synchronization mechanism is cer-
tainly only required for dynamically synthesized FUs. The performance gain provided
by such FUs should always be high enough to neglect the effects of the synchronization
tokens.

Until now single data transfers between different FUs were introduced. Dynami-
cally synthesized FUs often require high data volumes for high utilization. Single data
transfer will not provide the required data bandwidth for such FUs. To overcome this
problem AMIDAR-class processors may include support for burst and bulk transfers.
Obviously, the token generator could distribute a single token for each of the required
data transfers, but this seems to be very inefficient. In order to better support this situa-
tion we propose two specialized memory access tokens:

– Burst Data Transfer. In this case the memory needs two words of information to
commence the operation: the starting address and the number of words to trans-
fer. In case of a read request the memory starts to deliver data from consecutive
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addresses to the targeted FU upon reception of this information. In case of a write
request the memory waits for the data to arrive and writes each incoming word to
consecutive addresses.

– Bulk Data Transfer. It may occur that the synthesized FU needs to access the mem-
ory in irregular address patterns. In this case the FU needs to supply an address
word for each transfer. The addresses are transfered to the memory over existing
bus connections. This type of access is not as fast as a burst transfer, but is still
much more efficient than distributing a set of tokens for each transfer (at least one
for the address and one for the data).

3.5 Applicability

In general, the presented model can be applied to any kind of instruction processing,
where a single instruction is composed of microinstructions. Obviously, the model
doesn’t produce good results, if there is a strict order of those microinstructions, since
in this case no parallel execution of microinstructions can occur.

As previously mentioned, intermediate virtual assembly languages like Java byte-
code or the .NET code seem to be good candidates for instruction sets. The range of FU
implementations and communication structures is especially wide, if the instruction set
has a very high abstraction level and basic operations are sufficiently complex.

The great advantage of this model is that the execution of an instruction is not
dependent on the exact timing of FUs. Thus, FUs can be replaced at runtime with other
versions of different characterizations. The same holds for the communication structure,
which can be adapted to the requirements of the running applications. Thus, this model
allows us to optimize global goals like performance or energy consumption.

4 Adaptive Operations

Adaptivity in this model can be seen on two hierarchical levels. On the top level the
available chipsize is partitioned into an area for communication infrastructure and an
area for functional units. Most of the currently available reconfigurable devices will
not fully support this type of adaptivity, since resources for communication may not be
suitable for functional units and vice versa. Yet, the model should be general enough to
capture these possibilities. On the lower hierarchical level we have adaptive operations
that reconfigure each of the two main areas. Figure 2 illustrates the different adaptive
operations of our model.

Within the communication area several adaptive operations are possible:

– Adding and Removing Connections. If a functional unit has to send a data packet
to another FU but is not connected to it, it is necessary to create a new connection.

– Folding Buses. Two buses may be merged to a new bus, if there are only few
collisions on both buses.

– Splitting Buses. Buses with a high utilization and many delays can be split into
two buses. The decision, which bus has connections to which FU is done by the
heuristics as described in section 5.

– Removing Buses. Although this operation is already implied by folding of buses, it
is useful as a separate operation, because folding of buses has a higher complexity
than a simple remove.
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Fig. 2. Adaptive operations.

Several self-X features play a role regarding the adaptation of the communication
network. Of course, the network is self-optimizing. The optimization process must be
based on statistical data, which will be collected inside the AMIDAR processor, so an
AMIDAR processor is necessarily self-monitoring. The monitoring aspects will be dis-
cussed in section 5.1 in more detail. Depending on the structure of the communication
there may exist redundant communication paths, so AMIDAR processors may imple-
ment self-healing but until now we did not develop strategies to assist this process.

The emerging communication structure will arise only due to the requirements of a
running application. No external trigger influences this process.

Within the functional unit area three different categories of adaptive operations can
be applied:

– Variation of FUs. In this case variations of a certain FU may be available. From
these variations the heuristics (see section 5) choose the most appropriate. This
operation is fairly simple because it does not affect the token generator.
Moreover, it is possible to split an FU into more specialized ones. For example, an
ALU may be used for address calculations. This ALU may be split into an address
calculation unit and a normal ALU. Folding of FUs into one FU is the complemen-
tary operation to FU splitting. Just like the variation of the communication structure
this is an self-optimizing process based on self-monitoring.

– Increase and Decrease the Number of Instances of an FU. If the interval I of an
FU cannot be decreased by a more specialized version, it is possible to duplicate
this FU. Moreover, this concept may be used to introduce self-healing for AMI-
DAR processors. Vital FUs may be duplicated to continue program execution in
erroneous conditions.
Token distribution must be adapted to this new situation which must also care about
an equal utilization of the new FUs. Therefore, this adaptive operation is not as easy
to implement as a simple FU exchange.

– Addition of Newly Synthesized FUs. It is also possible to identify heavily used
instruction sequences and synthesize a new FU for such sequences. The instruction
sequence is replaced by a new instruction and the token generator is updated with
a token sequence for this new instruction. It may be applicable to synthesize com-
plete methods or functions. The calling function can easily replace the calling code
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to access the new hardware. This is the most complicated adaptive operation, but
promises the highest performance gain. The synthesis of new FUs is a combination
of self-optimizing and self-configuring. A more detailed discussion about the effect
of newly synthesized FUs for AMIDAR processors can be found in [8].

It should also be noted that the adaptive operations for functional units are inherently
emergent. The synthesis of new FUs only emerges from code sequences that are very
often in use. This new FU is only useful in the special context of the running application.
This is also true for the variation of existing functional units. The combination of FUs
evolves during the running application.

The general goal of all the adaptive operations is: the weakest bone will be strength-
ened.

5 Heuristics

According to the adaptive operations described in section 4 we need heuristics to de-
cide which adaptive operations lead to the best results regarding the requirements of
the running application. The configuration manager (section 6) is responsible for the
implementation of the heuristics regarding a predefined policy. The heuristics have to
decide, how the available chip area should be divided. There must be global heuristics
that calculates the ratio between chipsize for FUs and chipsize for buses. Furthermore,
we need local heuristics to assign the resources within the different areas of adaptiv-
ity (communication and FUs). Figure 3 shows the interaction between global and local
heuristics.

5.1 Statistical Data

To achieve the self-optimizing and selfconfiguring features as described in section 4 the
AMIDAR processor must be self-monitoring. Self-monitoring means, that the proces-
sor has to collect statistical data. This is possible on two architectural levels. On the one
hand the processor should be able to identify code fragments, methods etc. as candi-
dates for a specialized hardware unit. Some preliminary results about this topic will be
presented in [7].

On the other hand statistical data is required to identify the bottlenecks of the current
communication structure and the general purpose functional units. This data is the input
to several heuristics which decide how to achieve the optimization goals best.

Up to now all heuristics focus on performance optimization and are based on stalls
and utilization of functional units and buses. The stalls are divided into input stalls and
wait stalls, so every component requires two counters to store them. An input stall oc-
curs, if a component (FU or bus) could not accept data because it is currently working.
Input stalls can occur in buses and functional units. This is an indicator, that a com-
ponent is apparently not efficient enough to handle incoming data. More precisely, an
input stall in an FU indicates that the interval I of the FU is not low enough.

Wait stalls occur if a component is ready to work, but has to wait for input data.
Wait stalls are saved in the sending component, because the sending component is not
efficient enough to deliver data in time, i.e., the latency L is to high.
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Fig. 3. Interaction between global and local heuristics.

5.2 Global and Local Heuristics

The collected statistical data is the input for the heuristics. The global heuristics are
very straightforward. The main idea of the global heuristics is a slider, which divides
the overall chipsize into chipsize for communication and chipsize for functional units.
The criterion for shifting the ratio of chip size for communication and chip size for
FUs is based on monitoring stalls inside the communication structure and the FUs. An
attenuation factor ensures that only long-termed requirements cause a reconfiguration.
Thus, after a large number of execution steps the global heuristics can shift one cost
point between the communication structure and the FUs.

The local heuristics decide autonomously how to deal with the globally assigned
chip area. There are local heuristics for the communication structure and for the func-
tional units.

If the local heuristics for buses can use more chipsize, the heuristics try to split the
bus with most stalls. The source and destination information for delayed data packages
are used to make new connections between functional units. If the local heuristics for
communication structures have to save chip area, it will first try to merge two buses. If
no buses can be merged, connections of buses that were very seldom in use would be
removed.

The heuristics for functional units have more different operations. If the heuristics
can use more chipsize, it is possible to replace an FU by a more efficient one, duplicate
an FU and synthesize a new FU. First of all, the heuristics try to exchange the FU with
most stalls by a more efficient one. The different types of stalls control, which variation
of an FU is used to replace the current FU.

If an FU has many input stalls, it cannot accept data because it is currently working.
The FU is replaced by a throughput optimized one. If the FU has many wait stalls,
this indicates, that another FU was waiting for data. So we need a latency optimized
version of the FU. If a functional unit could not be improved anymore, the heuristics
may consider to duplicate this FU.

If the heuristics for functional units have to save chipsize, it first removes duplicate
FUs. If the heuristics have to save more chipsize, FUs with the fewest stalls and lowest
utilization are replaced by slower but smaller versions.
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Fig. 4. Model with configuration manager.

Heuristics that trigger a direct synthesis of a specialized FU cannot only be based
on stalls inside an FU. The code memory has to track which opcode sequences or meth-
ods/functions are often used. If these sequences are often slowed down by stalls in the
FUs, it may be feasible to trigger a synthesis process for this opcode sequence.

6 Configuration Management

Up to now, the presented model does not include any component to manage the replace-
ment of FUs or reconfiguration of the bus structure. Fig. 4 shows an extension of the
model in order to manage the configuration of the processor.

The configuration manager gathers statistical data from the functional units and the
bus structure. Typically, most of this data is collected with simple counters in the func-
tional units and the buses. Also, the code memory can record how often selected parts of
the code are executed. Based on this information the configuration manager can now act
according to its policy: replacement of FUs, reconfiguration of the bus structure, syn-
thesis of specialized FUs or deactivation of malfunctioning elements. Obviously, part of
the configuration manager must be implemented in hardware, but the major part should
be implemented in software. This software is then responsible for the implementation
of the self-X properties like self-optimizing, self-healing and self-configuration.

7 Experimental Results

To test the organic features of our model we derived the architecture of a Java bytecode
processor from it. A simulator implements this model to verify it and to prove that adap-
tivity leads to a measurable gain. Figure 5 shows the architecture of the Java bytecode
processor.

Currently, the simulator adapts the communication structure to the requirements
of the application (adding and removing of connections to buses, splitting and merg-
ing buses) and is able to exchange functional units. So the simulator can test the self-
monitoring and self-optimizing (regarding performance optimization) features of the
AMIDAR bytecode processor. Self-healing and self-configuring (dynamic synthesis of
FUs) is currently not implemented. The heuristics and cost model are the same as de-
scribed in section 5.
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Fig. 5. Architecture of a Java bytecode processor.

7.1 Test Applications

To prove the effectiveness of adaptivity in the Java bytecode processor, two test ap-
plications with different characteristics had to be selected that are expected to lead to
different structures. Therefore, a data dominated application and a control dominated
application were chosen.

A Java program that calculates the Integer Discrete Cosine Transformation (IDCT)
of an 8x8 byte array was used as the data dominated application. The control dominated
application is a finite state machine (FSM). We expected that the resulting structures
look different because of the very different usage of some functional units in the test
applications. The IDCT heavily uses the object heap (for array accesses) and the ALU,
whereas the state machine will use the jump unit especially. Operand stack and local
variable memory will be used in both applications in the same manner. The different
characteristics are reflected in the appearance of different bytecodes. The IDCT consists
basically of array and ALU operations. In contrast, the state machine uses if-bytecodes,
goto’s and only few ALU operations.

7.2 Results

To evaluate the speedup of the dynamic bus adaption and FU exchange in comparison
to a static architecture both test programs were executed in the simulator in different
modes. Firstly, we measured the minimal cost (worst case performance), which results
in one single bus for all components and slowest FUs. Then we measured the best case
performance. Faster FUs were used if they lead to a performance improvement. The
results are shown in table 1. It turns out, that the maximum speedup is 16% for the
FSM and 27% for the IDCT. The small speedup for the FSM especially comes from
the amount of jump instructions in the program. That’s why the program code can’t be
parallelized very well.

Secondly, we ran the applications in adaptivity mode with a cost limit. According
to table 1 the adaptive circuit for the IDCT program performs only 1% slower than the
best case architecture, and the circuit for the state machine program is 5% slower than
the best case circuit. The cost limit in both cases is set to 82% of the best case circuit.
Figure 6 shows more clearly, that the adaptive circuit is nearly equally fast as the best
case but only requires half the cost increase compared to the cost increase of the best
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Table 1. Measurements for the IDCT and FSM application.

used FUs
circuit costs clocks stack loc. vars ALU

best 113 69802 piped piped piped
worst 69 95952 normal normal slow
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worst 69 93416 normal normal slow
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Fig. 6. Comparison of adaptive, best case and worst case circuits.

case. Table 1 also shows, which functional units were replaced during the simulation.
In the best case circuit, of course, all memory components (stacks, local variables) and
the ALU are throughput optimized variants. It can be seen, that in the adaptive case the
different applications cause the usage of different FUs.

8 Conclusion

We presented a novel model of an adaptive processor with organic computing prop-
erties. The execution model allows any component of the processor to be replaced at
runtime as well as redundancy. We simulated the implementation of a Java bytecode
processor using this model. Although, we do not exploit all the self-X properties in this
simulation, it already shows the benefits of this approach.

9 Future Work

Some of the self-X features are implemented in a rudimentary way. We need to im-
prove the self-monitoring in order to support self-healing and other goals for self-
optimizations. Also, we need to find feasible algorithms that allow us to synthesize
FUs inside the system.
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Other work will be required to improve non organic features of AMIDAR proces-
sors: the inclusion of peripheral components into the processor, the usage of other inter-
mediate assembly languages or a better parallelizing of bytecode through the separation
of bytecode traces.

References

1. ajile Systems. aj-100 Datasheet, 2000. http://www.ajile.com/.
2. U. Brinkschulte, J. Becker, K. Dorfmüller-Ulhaas, R. König, S. Uhrig, and T. Ungerer.

Caruso – project goals and principal approach. In P. Dadam and M. Reichert, editors, GI
Jahrestagung (2), volume 51 of LNI, pages 616–620. GI, 2004.

3. F. Campi, R. Canegallo, and R. Guerrieri. IP-Reusable 32-bit VLIW Risc Core. In European
Solid State Circuits Conference (ESSCIRC), pages 456–459, September 2001.

4. Y. Chou, P. Pillai, H. Schmit, and H. P. Shen. Piperench Implementation of the Instruction
Path Coprocessor. In Proceedings of the 33th Annual International Symposium on Microar-
chitecture, pages 147–158, Monterey, December 2000.

5. C. Ebeling, D. C. Cronquist, and P. Franklin. Rapid – Reconfigurable Pipelined Datapath. In
R. W. Hartenstein and M. Glesner, editors, Field-Programmable Logic, Smart Applications,
New Paradigms and Compilers, pages 126–135, Berlin, 1996. Springer Verlag.

6. S. Gatzka and C. Hochberger. A new General Model for Adaptive Processors. In T. P. Plaks,
editor, Proceedings of the 2004 International Conference on Engineering of Reconfigurable
Systems and Algorithms (ERSA’04), 2004.

7. S. Gatzka and C. Hochberger. Hardware Based Online Profiling in AMIDAR Processors. In
to appear in Proceedings of RAW 2005, 2005.

8. S. Gatzka and C. Hochberger. On the Scope of Hardware Acceleration of Reconfigurable
Processors in Mobile Devices. In to appear in Proceedings of HICSS 38, 2005.

9. S. Gatzka and C. Hochberger. The AMIDAR Class of Reconfigurable Processors. Journal of
Supercomputing, to appear 2005.

10. S. Gatzka, C. Hochberger, and H. Kopp. Deployment of Middleware in Resource Constrained
Embedded Systems. In Tagungsband der GI/OCG-Jahrestagung ‘Informatik 2001’, pages
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Abstract. The SoC technology is used in small and flexible 
consumer electronic devices. SoCs include one or more microcontroller, mem-
ory, programmable logic, and the input/output logic control. Additionally, so-
phisticated SoCs support partial dynamic reconfiguration. Those are precondi-
tions to build the next generation of adaptive computing systems which make it 
possible to implement selforganizing systems that are self-configuring and self-
optimizing. The design of applications and the development of tools for system 
design are a great challenge. In this paper we describe an approach that is used 
to support the design of applications by generator tools. This approach allows 
the re-use and the generation of communication interfaces between the compo-
nents in partial run-time reconfiguration (pRTR) systems. The generator tool 
approach based on a methodology which enables a formal representation of 
adaptive systems and its timing schedule control. We prove our methodology 
and generator approach by applications from the field of signal processing.  

1   Introduction  

The development of small, fast, low-cost, and flexible systems is still a challenge for 
SoC designers. The complex structured reconfigurable SoCs with special features like 
partial dynamic reconfiguration makes it more difficult to design such systems. 
Thereby, the usage of both reconfigurable SoCs and SoC prototyping platforms re-
quires efficient design methods like re-use and generation support of HW and SW 
modules for several applications. Up to now SoC design tools did not support the 
design of pRTR applications suf- ficiently. Our solution for the domain of FEC 

applications is to expand the design flow for reconfigurable 
SoCs by generator tools to provide optimized system modules for several prototyping 
environments.  

This paper is structured as follows: Section 2 explains the advanced re-use based 
design flow. Furthermore, the assignments of our generator approach are illustrated. 
In section 3 we present of our inter-chip communication interface. In Section 4 we 
discuss the implementation results. Several RS codec implementa-
tions for different prototyping environments are explained. Section 5 concludes this 
paper and provides an outlook to further work.
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2   SoC Design Flow  

In order to fit demands of shorter development time within the em-
bedded systems, we provide a SoC design flow based on a generator tool developed 
by us [10],[11]. This generator tool is located on the top of the design flow and appear 
as an addon feature to different design flows for reconfigurable SoCs (see figure 1).  

 

Fig. 1. Advanced SoC Design Flow 

Generator tools provide parametrizable cores, which can easily be implemented 
into a complex design . For the design of portable applications we 
developed HW and SW libraries [12, 1]. The outputs of the generator tool are cores 
described in HDL and HLL . 
Thereby, they are suitable for different design flows and can be processed from sev-
eral design tools. As a synthesis result the generated bitstream files are usable for our 
prototyping platforms e.g. Atmel FPSLIC, AVR-Butterfly [18], Alpha-Data ADM-
XRC XCV-1000 [20], Ashling EVBA7 ARM7 [21], etc.  

2.1   Hierarchy Level Model  

For a formalizing abstraction of the generator tool approach we developed a hierarchy 
level model with two abstraction levels [11]. This hierarchy level model is shown in 
figure 2 and gives an abstraction of HW/SW systems into two dimensions. The hori-
zontal direction specifies the functional layers which defines the system borders. The 
layers are divided into the “board layer”, “application layer”, and “operating layer”. 
The “operating layer” is divided into the “operating layer – static” and “operating 
layer – dynamic” whereby the dynamic part of this layer is used to model partial dy-
namic reconfigurable systems. The vertical direction specifies the physical levels and 
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they are used for the development of HW and SW interface libraries.We divided the 
physical levels into the “functional level” on the top, the “processing level” in the 
middle, and the “interface level” at the bottom. The different layers and levels are 
independent. Furthermore, the horizontal layers use special interfaces for data ex-
change. It is possible to map all kind of HW and SW systems into this model.  

 

Fig. 2. Hierarchy Level Model 

2.2   System Architecture of the Generator Tool  

Established to the hierarchy level model described in section 2.1 we build the system 
architecture of our generator tool (see figure 3).  

 

Fig. 3. System Architecture of the Generator Tool 
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The generator tool uses a re-use database, which contains all design modules con-
sisting of both HW/SW and interface modules [12],[1]. Additionally the generator 
tool allows the selection of different design parameters which are used for the genera-
tion of parametrizable design modules. Generator modules are responsible for the 
generation of design modules whereby every generator module is applied to a special 
design task. 

3   Reusable Inter-chip Communication Interfaces  

SRAM based reconfigurable SoCs such as the Xilinx Virtex architecture [16] support 
features like partial run-time reconfigurability. The sequential execution of pRTR 
modules in a time-division multiplex manner enables the implementation of large 
designs into a moderately sized FPGA at the same chip location. For our reconfigura-
tion flow we assume that a design consists of a static part located at the operating 
layer static which will not be modi- fied during system run-time, and a dynamically 
reconfigurable part located at the operating layer dynamic in form of a pRTR module 
[3]. In the case of the Xilinx Virtex architecture the smallest configuration unit is a 
CLB column. The physical size of the pRTR module 
must always be a multiple of a CLB column. The modules are placed in the same 
location range and separated by CCI .  

3.1   Concept of CCI  

For an universal concept of chip-intern interfaces it is necessary to analyze the two 
parts of system abstraction [Section 2.1]. With regard to the “interface level”, the 
physical structure of the interface components and their HW-specific properties have 
to be analyzed. When using Xilinx Virtex FPGAs, the “interface level” is based on 
the special Xilinx Bus Macros ( ) [8], which realize the communication between 
different modules over the strict boundaries. The physical structure is shown in figure 
4a. With regard to the “functional level”, the abstracted functional structure of the 
dynamic reconfigurable application has to be analyzed. This functional structure is 
shown in figure 5b. The choice of the implemented interface blocks depends on the 
structure of static and dynamic parts. It can be varied by the:  

• number of the implemented dynamic and static modules,  
• number of communication interfaces between the modules,  
• realization of data memory management and  
• integration of the controller for data- and control flow.  

With the knowledge of these characteristics it is possible to build a communication 
interface, which consists of different communication modules realized with the HW-
specific features [7]. For the communication between dynamic and static parts, four 
different communication blocks are specified. The connection to a central memory 
block located in the static part will be realized with two special memory access 
blocks. On one hand, access to the RAM-module is integrated as a communication 
block, which is implemented for saving the data flow of the different dynamic mod-
ules ( ). On the other hand, access to several FF-
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registers, which can be used for saving control signals, is provided (
). Furthermore, the interface provides separate data channels (

) for the inter system communication e.g. with special i/o 
components. For checking the dynamic module status, several signals are integrated 
in the “Module Header” ( ). This block based interface design allows the genera-
tive design of the CCI. For the configurability of the CCI the designer can select a 
number of these reusable interface blocks, which will be integrated in a CCI module. 
The physical data transmission of the block-specific signals is realized with the spe-
cial Xilinx Bus Macros. The CCI module can be used in the further design process for 
building a dynamic reconfigurable application. It is also possible to generate an CCI 
module, which integrates several dynamic and static parts with different block based 
communication interfaces. The block based functional structure of the CCI is shown 
in figure 4b.  

 

Fig. 4. Configurable Communication Interface 

The advantage of generator-based design of CCI is that the HW-designer can de-
velop a dynamic reconfigurable application without knowledge about the physical 
specifics of the used FPGA [7], [14]. So he designs the functional structure of the 
application and a generator tool provides the dedicated interface for the communica-
tion between the modules. Figure 5a shows the concept of the generator based design. 
The adaptation of CCI to any application is possible by choosing the required number 
of interface blocks. For the determination of the block properties, it is necessary to 
make a pre-design-analysis. Thereby, the entity signals of the several dynamic mod-
ules must be merged and in order to provide the required data each time, the module-
implement-time-data dependency between the modules is important to check. After 
this analysis the generator tool can build the CCI-module, based on specified parame-
ters.
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3.2   Design of CCI  

The design process is based on the hierarchy-level model introduced in section 2.1. 
As shown in figure 5b the CCI is integrated in “operating layer”. For the abstraction 
from the physical HW it is necessary to design several vertical hierarchy levels in 
separate modules. So it is possible to build functional application modules which are 
independent from the target architecture [11]. An adaptation layer connects the func-
tional modules to the HW specific level. With this design method an application can 
be mapped to various architectures without any change in the structure of modules. 
For the different target architectures special components, which realize the physical 
HW binding must be provided. By using Xilinx Virtex FPGAs for building dynamic 
reconfigurable applications, the special features of the Xilinx Modular Design Flow 
( ) [8], [2] must be applied.  

 

Fig. 5. CCI integration 

The integration of CCI in the vertical hierarchy level model is shown in figure 6b. 
This picture shows the data flow over the boundaries between dynamic and static 
modules. A special CCI wrapper, located in “processing level”, binds several func-
tional operation modules to the CCI. The signal processing of module communication 
is realized on the “interface level” by integrated BMs. Because one BM only provides 
communication of four signals, the CCI must contain as many BMs as needed for all 
required signals. Considering that a BM realizes a tristate binding on special global 
routing resources, it is important to specify the direction of the signal flow. Figure 6a 
shows a BM binding. By using the developed VHDL code generator for the creation 
of the CCI, this tool realizes the correct binding of BMs. The CCI wrapper has two 
main tasks. On one hand, it converts the module signals for the communication over 
the CCI; on the other hand it controls the states of module processing. There are three 
states: fetching the required data from memory, running the module and resave data 
into memory. Due to this structure it is possible to re-use many parts of the CCI 
wrapper for the different operation modules. Based on this level implementations the 
further design process with the XMDF is possible. The output of this design flow are 
special bitfiles from the static and dynamic modules for programming the Xilinx 
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FPGA. The developed VHDL code generator for the creation of the CCI is realized by 
an ANSI-C imlementation. Based on specific information of CCI, deposed in an ini-
file, the generatortool builds a CCI macro module with error-free and XMDF-
synthezable VHDL-code for integration in further design process. This approach of 
the level-based model for building dynamic reconfigurable applications can also be 
used for other architectures than Xilinx Virtex FPGAs, e.g. for the Xilinx Virtex II/II 
PRO architecture. Only the code generator has to be modified with the target specific 
properties for communication in pRTR environments. For efficient storage of the data 
during the reconfiguration of FPGA a memory model has been developed. This model 
allows the flexible access to several independent memory blocks based on using the 
Xilinx specific BlockRAMs. With the combination of the CCI and the memory model 
a universal and flexible approach for using dynamic recon- figuration in Xilinx 
FPGAs has been developed.  

 

Fig. 6. Classification of the CCI 

4   Experiments  

We examined our design methodology within a DVB-T (Digital Video Broadcasting
Terrestrial) utilizing FEC applications [9].  

4.1   FEC-Applications  

In order to explain our methodology and its objectives we select the RS codec appli-
cation. RS codes are block-based channel codes which are used in a wide range of 
applications for digital communication systems e.g. for data transmission, data storage 
and data retrieval systems (CD, DVD) [9]. Utilization of RS code allows detection 
and correction of errors within a data stream without further retransmissions.  

The most expensive part within the RS decoding is the error correction process 
shown in figure 7. The error correction process of the received code includes the five 
single steps “syndrome calculation ”, “calculation of the error locator polyno-
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mial ”, “find the error locations ”, “calculation of the error magnitudes 
” and error correction. To optimize the detection and correction of up to two 

errors we implement additionally a detection module , a one error correction 
module , and a two error correction module shown in figure 7a [6]. 
The range of variation of the implemented RS codec modules allows different capa-
bilities for execution and design configuration. At the right side of figure 7b (as an 
example) the RS codec modules , and are configured and exe-
cuted on the SoC. If the number of errors increases then the error correction flow 
according to the left side of figure 7b is executed.  

 

 

Fig. 7. Reed-Solomon codec 

4.2   Implementation results for Configurable Communication Interfaces  

The complex structure of CCI and the consideration of many design flow parameters 
makes it necessary to implement an efficient VHDL code generator, which creates a 
CCImacro for communication between parts of dynamic reconfigurable application. 
For each communication block in the CCI a determined LoC will be 
generated in the VHDL macro file. By increasing of the bit-width of data vectors or 
the number of integrated CCI blocks, the CCI will be more complex and the generated 
LoCs rises. Furthermore, for an estimation of complexity of CCI with regard to the 
used BMs, it is important to know how many of these BMs are implemented. The 
reason for this is the maximum number of possible BMs in the FPGA. Table 1 lists 
the LoC and BM values in dependence of the bit-width and the number of integrated 
CCI blocks. Based on this table it is possible to create a cost function for any CCI in 
the pre-design-analysis. This table also shows the flexibility of the block based CCI. 
The different blocks can be combined with each other, can be varied in different pa-
rameters and the code generator tool creates a proper VHDL macro for each applica-
tion. The efficiency of such code generators rise with the number of generated LoCs 
and thus with frequency of use.  
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Table 1. Generated LoCs and used BMs of CCI blocks 

 

4.3   Utilization of the CCI Inside the FEC Application  

For testing CCI, the RS codec application has been transferred from a static imple-
mentation to a dynamic reconfigurable implementation. The integration of RS codec 
in the CCI concept is shown in figure 8b. All steps of design flow must be run. 
Firstly, all error correction modules are specified as pRTR modules. Based on the pre-
design-analysis data of the RS codec modules it is possible to generate a CCI by the 
generator tool. After generating the interface different CCI wrappers have to be de-
signed. Thereby, the reuse-factor is very high because the basic structure of every 
Wrapper is equal. With the designed components it is possible to run the XMDF for 
creating the special bitfiles of the static and dynamic modules. This flow is shown in 
figure 8a. Based on the partial bitfiles it is possible to integrate the RS codec applica-
tion into a schedule algorithm. The scheduler monitors the run of each module and 
reconfigures it as soon as the module has completed its work.  

The advanced sequence flow of RS codec application is shown in figure 7b. The 
result of the implementation is shown in figure 9. There is a picture of FPGA imple-
mentation of the static and dynamic part (SYN module) with an integrated CCI.

5   Conclusions  

The configurable communication interface design approach presented in this paper 
suggest a new design methodology for the design of the next generation adaptive 
computing systems. Our work has a particular importance for reusability, flexibility, 
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and for the support of the generator based design methodology. Basing on the pre-
sented interface approach we build a plug-in for our generator tool to generate com-
munication interfaces automatically. A generated communication interface fits exactly 
with a specific application for reconfigurable SoCs. The feasibility of the proposed 
method has been demonstrated by an implementation of a RS codec design on a  
Xilinx Virtex XV1000 device. Future work will address the design of configurable 
communication interfaces for other reconfigurable SoCs and the utilization of the 
interfaces in a wide range of applications.  

 

Fig. 8. Classification of the RS codec Application into CCI concept 

 

Fig. 9. FPGA implementation of reconfigurable RS codec 
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Abstract. In this paper, we introduce a new approach in Design-Space-
Exploration (DSE) for non-clustered VLIW architectures. It differs from ex-
isting techniques by using a “bottom-up” strategy. While other approaches start 
with the design of an architecture, followed by building a possible schedule, we 
firstly build a schedule and after that an architecture is synthesized, which is 
suitable to execute this schedule. So, the results can be obtained fully auto-
matically and in very short time. Furthermore, we can explore arbitrary types of 
functional units without increasing the design space exploration time signifi-
cantly. We evaluated our method and compared the obtained results to an exist-
ing DSE approach for clustered and non-clustered architectures. We almost al-
ways obtain better results in the case of non-clustered architectures. In many 
cases the ports of the register file are decreased, which, in consequence, leads to 
higher clock rates. Compared to the results for clustered architectures for some 
examples our non-clustered architecture is better than the best clustered one. 

1   Introduction 

By Design Space Exploration (DSE) a well suited processor for a given application 
(or its most frequently executed parts) is figured out. Instruction level parallelism 
(ILP), well supported by VLIW architectures, is a favored technique to achieve the 
necessary short run times. The data path of a non-clustered VLIW consists of a single 
register file and a certain number of functional units (FUs). Each FU supports a cer-
tain set of operations (e.g. addition, multiplication, shift, etc.) and can access the full 
register file. The operation to be executed in each cycle by each FU is coded into a 
single very long instruction word. All operations coded into an instruction are carried 
out in parallel. Because of its regular data path, the parameters of a VLIW can be 
adopted to the applications demand during DSE and easily be mapped into hardware. 
Most important is the number of functional units (FUs) and their types. By the type of 
a FU we mean the kinds of operations performed by it. Incrementing the available 
ILP (i.e. number of FUs) leads, in general, to higher performance. But this increases 
also the number of ports of the register file, which increases its area, power dissipa-
tion and delay. While area and power dissipation grows by �3, delay grows by �3/2 for 
� FUs [12]. For this reason the register file becomes the bottleneck in the design of a 
VLIW architecture. To save hardware costs and to reduce the power consumption, the 
degree of parallelism supported by the processor must be restricted to a minimum and 
should be the main goal in DSE for VLIWs.  
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Most existing DSE approaches use a top-down strategy. I.e., for a given architec-
ture the required tools (compiler, simulator) are generated and used to evaluate the 
performance of the application on this architecture. If necessary, the architecture is 
changed, either by hand or automatically, and the evaluation starts again. Such an 
approach is the PICO project [4, 13]. Beside the VLIW architecture, also memory 
architecture and special hardware extensions are explored. The exploration of the 
non-clustered VLIW architecture is done by a search in the design space (spacewalk). 
Several search strategies are introduced, one of them is a pareto-optimal search. For 
each architecture which has the maximal performance among all architectures of the 
same or higher costs, new architectures are derived by adding new FUs or registers. 
The implemented operation types in each new FU are determined by static and dy-
namic estimations of the given application. In [16] a clustered VLIW data path is 
synthesized. For a given number of clusters and a given number of FUs per cluster a 
schedule of minimal length is searched. Before scheduling, operations are bound to 
clusters. A � + 1 cluster architecture is derived from a � cluster architecture for which 
the shortest schedule was found. The configuration of the previous � clusters remains 
untouched and the configuration of the new cluster is obtained by producing sched-
ules for different FU configurations in the new cluster. FUs for addition and multipli-
cation are considered separately. This leads to a high number of ports in each register 
file. Taking other operation types into account, would increase the exploration time 
for the additional cluster dramatically. In [2], an exhaustive DSE for the TriMedia64 
CPU is done. The exploration space was limited to a non-clustered architecture with 
five FUs. The considered operation types for exhaustively DSE were limited to the 
most frequently used operation types in the used benchmarks. Thus, port sharing is 
allowed. The allocation of the remaining operation types is done in a second step by 
extending the best architectures from the first step. In all these approaches the inner 
structure of the algorithm is not taken into account for optimizing the architecture. 
Our idea is to use a compiler for DSE, which analyzes the algorithm. It compiles the 
application without any architectural constraints and optimizes the hardware during 
compilation. A similar idea is proposed in [6] to determine an architecture for DSPs. 
However, there, the number of FUs is defined in advance. The same idea is also pro-
posed in [8] for clustered VLIWs and a clustering algorithm is introduced but no 
further parameters of the architecture are determined so far by a compiler. 

Our proposed idea is related to High-Level-Synthesis (HLS). There, a behavioral 
description (e.g. a data flow graph) must be mapped into hardware, using as less 
hardware blocks as possible. This can be done by scheduling and binding. The opera-
tions in the data flow graph (DFG) must be scheduled in such a manner, that during 
the binding stage as much hardware blocks as possible (e.g. adders and multipliers) 
can be reused. In [14] simulated annealing is used to couple scheduling and binding. 
In [11] and [3] several scheduling techniques are introduced and the binding problem 
is solved by constructing a conflict (or compatibility) graph. However, the optimiza-
tion goals in HLS differs from those in DSE for VLIWs. In HLS, mapping the DFG 
into hardware leads to a data flow architecture. Such an architecture does not require 
large register files. The outputs of an hardware block are directly used as inputs for 
the next hardware block, if possible. The major delay and costs in such hardware so-



180      Mario Schölzel and Peter Bachmann 

lutions arises from the hardware blocks, whose number must be minimized, therefore. 
In opposite to this, a VLIW architecture must match all the basic blocks of the appli-
cation. Because the centralized register file is the bottleneck, the number of all opera-
tions carried out in parallel, and not only the number of operations of each type car-
ried out in parallel, must be minimized. For this reason scheduling and binding 
algorithms proposed in HLS must be adopted to these optimization goals.  

2   DESCOMP 

2.1   Overview 

A schedule is a sequence of instructions. It determines for each operation its exe-
cution cycles. The type of an operation � is denoted by ����(�). Each operation type 
may has an individual latency time and individual hardware costs. Both is to specify 
before DSE starts. In the schedule, an operation may occupy several consecutive 
instructions, if its latency time is greater than 1. I.e., executing such an operation by a 
FU takes several cycles. Full forwarding must be supported by the architecture, this 
means that the result of an operation is available in the next cycle after finishing the 
operation in the pipeline. Heterogeneous FUs which carry out operations of different 
types, for instance addition and multiplication, are allowed. But this is just an aspect 
of modeling and means that the hardware for several operation types can share the 
same ports in the register file. Instruction level parallelism is fully controlled by the 
compiler and the schedule is exactly executed in the given order. Thus, no hidden 
stall cycles are introduced by the processor, except in the case of cache misses. This 
guaranties a good static estimation of the execution time of the given kernel, only on 
the basis of the length of the schedule and the clock rate of the processor. 

Starting point for our DSE approach is a basic block, represented as an acyclic data 
flow graph (DFG). In the scheduling stage, all operations from the DFG are sched-
uled within a given number of � instructions and the schedule is optimized with sub-

ject to: 

• a minimal width, in order to use as less FUs as possible and 
• a minimal number of operations of the same type within the same instruction, in 

order to save hardware costs. 
Note, after scheduling only the execution time of an operation is fixed. Thus, the 

scheduling stage determines the required number of FUs and registers. But so far, 
register usage is not optimized. The required number of registers can be determined 
by counting the maximal number of simultaneously alive values in the schedule. In 
the binding stage, the operations are assigned to FUs. This determines the type of 
each FU. In order to find the best architecture for a piece of software, for each basic 
block a sequence of schedules with increasing length is calculated. From these sched-
ules the best combination is chosen to meet the time constraints while keeping the 
hardware as cheap as possible. 
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2.2   Scheduling Stage 

In the scheduling stage the only constraint is to build a schedule of a given length � 
from a DFG. For every node � in the DFG we compute its mobility 	
�(�) � 
���(�)-���(�) by the so-called time frame, consisting of its earliest (���) and latest (���) 
execution time: 

� �
� �

� � ��� � � � � � � � �	
���	 ��� ��
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� � � � � �
 

Here, � denotes the set of all edges (data dependencies) of the DFG and ��(�) is the 
latency time of the operation type of node �. Note, that an increased length of the 
schedule leads to increased mobility. The scheduling algorithm, similar to force-
directed-scheduling [9], has to schedule each operation within its time frame. It works 
stepwise. In every step one node, selected by a ���
�����������
�� is scheduled. An 

��������� ������
�� is used to choose the instruction to which the selected node is 
assigned.  
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Fig. 1. (a) DFG, (b) Interval graph for the DFG in (a) and a schedule length of � � 5, (c) Inter-
val graph for the DFG in (a) after scheduling operation 2 into instruction 2. 

Priority function as well as objective function is calculated on the basis of an inter-
val graph. The interval graph has � instruction-nodes and, additionally, all the opera-
tion-nodes of the DFG. An edge connects an instruction-node � with an operation-
node� � if and only if the execution of � may take place at cycle �, i.e. 
���(�) ≤ � < ���(�) + ��(�). The number of operation nodes adjacent to an instruction 
node � is denoted by ���(�). Figure 1 (b) shows the interval graph for the DFG in 
Figure 1 (a) and ��5. At the beginning of each step the priority function selects an 
operation node � which has a minimal mobility. If there are several nodes with the 
same mobility, one of them with the most expensive operation type is chosen. This 
avoids the execution of several expensive operation types in the same instruction. 

Scheduling a node � to an instruction � affects the time frames of its successors and 
predecessors. For example, scheduling node 2 to instruction 2 affects the time frames 
of the nodes 3, 4, 5 and 6 and causes the deletion of edges in the interval graph, as 
shown in Figure 1 (c). By �

��  we denote the interval graph obtained from interval 
graph � by scheduling � to instruction � and updating the time frames of all affected 
nodes. For example, if the interval graph in Figure 1 (b) is �, then the interval graph 
in (c) is �

�� . 
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In principle, node � can be assigned to each of the instructions � with 
���(�) ≤ � ≤ ���(�). However, some of the assignments can cause instructions without 
any operations. This is avoided by testing whether for every empty instruction, start-
ing with the earliest one, an unscheduled node � with minimal ���(�) + ��(�), can be 
assigned. If this is possible then instruction � becomes a candidate for scheduling. 

In order to determine an instruction to which the selected operation � is assigned, 
the objective function is applied to every �

��  where � is a candidate. For every �
��  

three values are calculated: 

• 	�( �
�� ), an estimation of the required number of FUs for the final schedule, 

• 	�( �
�� ), an estimation of the expected hardware costs for the final schedule and 

• ��( �
�� ), which refines the estimation, done by 	�( �

�� ). 

	�( �
�� ) estimates the effect of the decision to assign operation � to instruction � on 

the number of FUs in the final schedule by scheduling the remaining nodes. It uses a 
list scheduling algorithm which aims to get a slight schedule. The schedule, done by 
	�, is only to estimate the smallest number of required FUs. In order to distinguish 
from the proper scheduling, we call it e-schedule (estimation-schedule). The e-
scheduler picks a node � with minimal mobility and assigns it to instruction �, if  

� � � �

� 	

��� � ��� 	

�� ��� �
	

� �
 

holds for all instructions 	 within the time frame of �. Here, �k is the number of 
nodes which are already assigned to instruction � and �� :� max{�i | 1 ≤ � ≤ �}. This 
means, e-scheduling assigns � to �, if only a few operations are currently assigned to 
instruction � and the maximal number of operations possibly assigned to � later on 
will be low. After scheduling �, the interval graph is updated and the next node is 
selected. Note, that in each e-schedule step ��, � and ��� depend on the actual inter-
val graph. Thus, if during e-scheduling an operation extends the width of the e-
schedule we get more freedom for scheduling the rest of the nodes. A lower bound 
for �� is given by ���, where � is the number of nodes of the DFG. The e-scheduling 
algorithm starts with this lower bound. 	�( �

�� ) returns the required number of FUs 
for the final e-schedule and e-scheduling stops. 

If there are several instructions for which 	�( �
�� ) is minimal, we use this freedom 

to minimize the hardware costs. Remember, that the scheduling algorithm runs with-
out resource constraints. This means, we have to care about the number of required 
operation types in the final architecture. Let a cost function �
��(�) be given for each 
operation type �. The additional load of type � is the maximal number of operations of 
type � which occur in a common instruction and causes new hardware costs. If a func-
tion �
�(�) gives the additional load of each operation type � then 

� � � � � ��
�

�

	� � �
� � �
�� �
�

� 
�
�

 

describes the expected hardware costs if node � is assigned to instruction �. � is the 
set of all operation types in the schedule. 

For every interval graph � and every operation type � there is a minimal load 	�(�) 
independent in which way the schedule goes on. 	�(�) is the maximal number of 
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operations of type � which, must be scheduled in a common instruction in �. If an 
operation type � occurs in the schedule, then of course 	�(�) ≥ 1. For the calculation 
of �
�(�) we consider only the amount which exceeds the minimal load. The prob-
ability that an operation � will be assigned to an instruction � is  

�
� � �	
� � �

, 

if � is connected to � in the interval graph, 0 otherwise. As load value �(�, �) of an 
instruction � we take the sum of the probabilities, that an operation of type � is sched-
uled to � taking into account the minimal load 	�(�). So, we get 

� � �

�
� � �

� � �� � � �

� � �
	
� ��

�
��  

where �(�, �) is the set of all nodes � with ����(�) � � and � is adjacent with � except 
the 	�(�) nodes with the smallest mobility. For example, in Figure 1 (b) 	�(+) � 1 
and therefore, for the graph in Figure 1 (c) we get �(+, 3) � � since node 3 is the 
only + operation connected with instruction 3 and must be excluded because of 
	�(+) � 1. Therefore �(+, 3) � 0. It is �(+, 4) � {3} since the two + operations 3 
and 5 are connected with instruction 4, but 	
�(5) < 	
�(3) and, therefore, 5 is ex-
cluded. We get �(+, 4) � 1 / (	
�(3) + 1) = 0,5. 

The load value associated with type � is the maximal load value of all the instruc-
tions: 

�
�(�) :� max{�(�, �) | 1 ≤ � ≤ � }. 

This means we schedule node � into an instruction �, such that the remaining nodes 
can be arranged in a slight schedule and the load of each operation type is well bal-
anced. This leads in consequence to an architecture which has as less FUs as possible 
and the hardware costs arising from the provided operation types in each FU are 
minimized. A detailed definition of ��( �

�� ) is given in the next section. 

2.3   Binding Stage 

After scheduling the operations in each instruction are fixed. It remains to assign 
operations to functional units in such a way that the number of different operation 
types in each FU is minimized. We do this by coloring an interference graph. 

2.3.1   Constructing the Interference Graph 
By the interference graph � � ( , ! � ") we express dependencies between operation 
types in the schedule.   is the set of operation nodes in the DFG, ! and " are two 
disjoint sets of edges. For coloring the nodes we have as many colors as FUs. All 
nodes with the same color are executed by the same FU. 

Two nodes � and � are adjacent by an edge (�, �) � !, if both operations 	��� be 
executed by different FUs. This holds, if and only if � and � must be executed in the 
same cycle. For example, in Figure 2 (a) in instruction 1 the + and * operation are 
executed in the same cycle. Thus, they are adjacent by an !-dependency in Fig-
ure 2 (c). 
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Analogously, two nodes � and � are adjacent by an edge (�, �) � ", if both opera-
tions �#
��� be executed by different FUs. The "-dependencies stems from some 
operations of the same type, which are executed in different execution cycles. In case, 
� is such an operation of type � which occurs in instruction �, � is an operation of a 
different type occurring in another instruction, say �, where also an operation � of 
type � must be executed then, an edge (�, �) � " forces to color nodes � and � with 
the same color. In Figure 2 (a), operation type + occurs in instructions 1,3 and 4. If 
there are three colors then by the "-edge (8, 10), for instance, it is forced that node 10 
gets either the color of node 6 or of node 7, both of type +, since node 8 can not get 
the same color as nodes 6 and 7. 

In detail, the interference graph is constructed from a given schedule in the follow-
ing way: 

1. For each operation type � we take any instruction with the greatest number of oc-
currences of that type. We denote this instruction by 	t. 

2. For every type �, we fill up instruction 	t with �
� operations, so that it contains 
exactly � operations if k is the number of available functional units. These addi-
tional �
� operations ensure the aimed effect of the "-dependencies. All the op-
erations, including �
�-operations, become nodes of the interference graph.  

3. For every instruction � in the schedule and each pair �, � of operations within it, 
we add an !-dependency (�, �) to !. 

4. For every instruction � in the schedule we add an edge (�, �) to "	if node � occurs 
within instruction � and has a type ��	but node � has a different type and occurs in 
instruction 	t with 	t  �$ 

In Figure 2 (c) the final interference graph for the schedule in Figure 2 (b) is 
shown. Here 	+ � 3, 	* � 3 and 	& � 2. 
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Fig. 2. (a) Example schedule, (b) Example schedule with �
� operations, (c) Interference graph 
for the schedule in (b), where 	

+
 � 3, 	

*
 � 3 and 	

&
 � 2. 

2.3.2   Coloring the Interference Graph 
Binding is now performed by coloring. Of course, any coloring algorithm may be 
used. But, due to the "-dependencies it will not always be possible to obtain a �-
coloring as it is shown in Figure 3 (a).  
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Fig. 3. (a) Schedule, in which each operation type appears at most once in each instruction. 
Nevertheless, one of *, + or & must be performed by two FUs, (b) Compressed interference 
graph for the schedule in (a), (c) Schedule in which the dependencies from (a) are resolved, (d) 
Compressed interference graph for (c). 

Here, in the instructions 1 and 2 the operations + and & occur together. To avoid 
multiple implementations of + and &, the both + operations are executed by FU � and 
the both & operations by FU �. This enforces the implementation of - and * within 
FU . Now, in instruction 3, operations - and * occur together and thus, one of these 
operation types must be implemented in a second FU. The corresponding interference 
graph can not be colored with 3 colors because "-dependencies force to use the same 
color for both operations within instruction 3 which is, of course, forbidden by !-
dependencies. 

This problem is resolved by another schedule like in figure 3 (c). For this reason, 
the function �� is used during the scheduling stage. Assume, we have the choice to 
schedule operation * into instruction 3 or instruction 4. In both cases 3 FUs are re-
quired and each operation type appears at most once in each instruction. Thus, 	� 
and 	� will return equal results in both cases. Nevertheless, scheduling * into in-
struction 3 will cause the implementation of * in a second FU, whereas scheduling * 
into instruction 4 will not, which is the better choice. Exactly this kind of dependen-
cies can be found in the compressed interference graph shown in Figure 3. Operation 
nodes in different instructions but of the same type are mapped onto the same node in 
the compressed interference graph. Hence, only !-dependencies occur in it. Less 
dependencies between operation types in different instructions lead to less edges in 
the compressed interference graph. The objective function ��( �

�� ) constructs the 
compressed interference graph for all scheduled nodes in �  and uses the number of 
edges in it, to guide the scheduling. 

If, however, the schedule of Figure 3 (a) cannot be changed then, to obtain a legal 
coloring, we must neglect some dependencies. Of course, we can not neglect !-
dependencies. But we are allowed to neglect "-dependencies. For this reason, we use 
a coloring-heuristic which always succeeds, if we neglect all "-dependencies. The 
worst case, to ignore all the "-dependencies, will not appear in most cases. The used 
technique is a greedy strategy well-known in graph theory and also used for register 
allocation [5]. We begin to remove from the interference graph all nodes � and their 
adjacent edges with less than � neighbors. All such nodes are colorable. Note, that in 
this process for some nodes the degree is decreased and so, they also can be removed. 
If all remaining nodes have � adjacent edges or more, then we remove a node, which 
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has less than � adjacent !-edges. It can be shown, that such a node always exists. 
After that, we continue to remove nodes where again "-dependencies are taken into 
account. When the last node is removed we insert the nodes and corresponding edges 
in the reverse order and give them a color, which is not used by an adjacent node. 
Here we may ignore "-dependencies, but never !-dependencies. In Figure 4 (a) the 
interference graph from Figure 2 (c) is shown after removing the nodes 2, 1, 4 and 5 
in this order.  
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Fig. 4. (a) Interference graph after removing nodes 2, 1, 4 and 5, (b) Colored interference graph 
after inserting nodes 3, 7, 6, 8, 9, 10 and 11, (c) Colored interference graph after inserting the 
remaining nodes 5, 4, 1 and 2, (d) Binding result obtained from the colored interference graph. 

Now, the graph contains only nodes with 3 or more neighbors. For this reason we 
remove a node, which is adjacent with less than 3 !-edges and has the lowest hard-
ware costs. In the example this holds for node 11. After removing it, we can proceed 
with removing the nodes 3, 6, 7, 8, 9 and 10. Inserting these nodes in reverse order 
and coloring them leads to the colored interference graph in Figure 4 (b). Also node 
11 is colorable respecting the "-dependencies, because node 3 and 9 got the same 
color. Inserting the rest of the nodes leads to the final colored graph in (c). In (d) the 
final schedule is shown. As we can see, FU  has to implement only the 
	����������
�, FU � implements only an �����
� and FU � an �����
� and �
�����
��. 

2.4   Extension to Several Basic Blocks 

So far we have built a VLIW-architecture for a given basic block and given length. In 
order to build an architecture capable to execute several basic blocks, we assume that 
in a previous profiling step, the execution frequencies of these basic blocks were 
determined. Now, the input is a set of program fragments. Each program fragment 
consists of several basic blocks. For each program fragment � a time constraint �(�) 
and for each basic block � of � the execution frequency �%�(�) is known. Further-
more, a function ��� is given that determines for a given number of register file ports 
the highest possible clock rate of the VLIW architecture. To figure out an architecture 
that meets the time constraints for all program fragments the following steps are per-
formed: 
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1. For each basic block and each possible length the schedules are computed accord-
ing to our method explained above. So, for each schedule length the number of 
required FUs and operation types is known. 

2. In a second step, the smallest number 	�� of FUs is determined, that still allows 
to execute each program fragment within the required time. We start with 
	�� � 1�and increment it continuously. For the current value of 	�� and each ba-
sic block � the shortest schedule using no more than 	�� many FUs is selected 
from the schedules of step 1. We denote its length by 	&(�, 	��). If for all pro-
gram fragments �� 

� � � � �

� �
�� �

� �

	& � 	�� �%� �

� �
��� 	��

�



	




�
 

holds, we stop, otherwise 	�� is incremented again. If 	�� becomes larger than 
the highest number of FUs of any schedule, no architecture can be found to meet 
all the time constraints. 

3. For each basic block and each length a new schedule is generated using 	�� as 
lower bound for �� in the function 	�	 ����	 ����. This relaxes the pressure to 
minimize the number of FUs and provides more freedom for the function 	� to 
minimize the number of simultaneously executed operations of the same type. 

4. For each basic block a schedule is selected which uses at most 	�� many FUs and 
minimizes the number of simultaneously executed operations of the same type. 
For this reason, the number of each available operation type is decreased stepwise 
using the following search algorithm: 

search(a) 
  if(not legal(a)) 
    return a configuration for which confCost is infinite; 
  minConfiguration = a; 
  foreach OperationType o do 
    if(a(o) > 1) 
      mc = search(a<o,a(o)-1>) 
      if(confCost(mc) < confCost(minConfiguration)) 
        minConfiguration = mc 
  return minConfiguration 

Here, a configuration  defines for each operation type 
 the available number of 
FUs, say �, that are able to execute that particular type (i.e. (
) �	�). <
,	> is 
the redefined configuration , where <
,	>(
) � 	 and <
,	>(%) � (%) for 
all %  
. �
��'
�� simply sums up the costs of the operation types in the given 
configuration. In the initial configuration, (
) is defined as the maximal occur-
rence of 
 in all schedules of length 	&(�, 	��) for all basic blocks �. For each 
configuration the shortest schedule of each basic block that can be executed with 
the available resources (i.e. the available number of each operation type and the 
available number of FUs) is determined. If the time constraints are met (i.e. the 
above equation holds) with the selected schedules, the configuration is considered 
to be legal and further resources will be decreased by the search algorithm. In 
general, the search has an exponential runtime. However, in practice the runtime 
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is very short because after a few steps the time constraints are exceeded due to the 
limited number of available resources. The search algorithm results in a minimal 
configuration 	. Therefore, the final architecture must implement each operation 
type 
 at least 	(
) times to meet the time constraint for all program fragments. 
For each basic block the shortest schedule that requires each operation type 
 at 
most 	(
) times is selected and used as input for step 5. 

5. The binding algorithm is commonly performed for all schedules selected in 4. A 
single interference graph is constructed for all selected schedules, simply by treat-
ing all schedules together as a single one. 

3   Results 

The explained DSE approach was implemented in Java using two benchmark con-
figurations. In the first one we applied our approach to single basic blocks (given as 
DFGs), taken from the PhD thesis of Lapinskii [15]. This enabled us to compare the 
quality of our approach to the one of Lapinskii. In the second configuration we de-
termined an architecture for a given set of program fragments. Some properties of the 
used benchmarks are listed in Table 1.  

Table 1. Benchmark summary and properties. 

number of operations of each type Name number 
of nodes 

critical path 
length 

number of 
components + - * shl xor and or not 

ARF 28 8 1 12 0 16 0 0 0 0 0 
DCT-DIT 48 7 1 24 12 12 0 0 0 0 0 
EWF 34 14 1 26 0 8 0 0 0 0 0 
FFT 38 4 1 9 17 12 0 0 0 0 0 
SWIM1 26 4 3 10 8 8 0 0 0 0 0 
MD5 24 15 1 12 0 0 4 3 4 3 2 

The basic blocks occurred in loop kernels from multimedia and signal processing 
applications. Nevertheless, our approach can be used for arbitrary application do-
mains. ARF (auto regression filter), DCT-DIT (discrete cosines transformation), 
EWF (elliptic wave filter) and FFT (fast-fourier-transformation) originally come from 
[1], SWIM1 (Shallow Water Modelling) from [7]. The MD5 benchmark was taken 
from [10]. As in [15], we assumed that each operation can be executed within one 
cycle. Using our implementation we computed for every basic block and for every 
reasonable schedule length one architecture. In [15], because of the there used top-
down-approach, not for each schedule length an architecture could be constructed. In 
Figure 5 the results are compared for each schedule length for which in [15] a non-
clustered architecture was explored. In almost every case our approach leads to better 
results with respect to register file ports (i.e. FUs). This means, our architecture 
would be able to run at higher clock rates, if necessary. Especially for short schedules 
we are able to save up to 40% of the ports. 

Only in one case (DCT-DIT, L = 37) our approach leads to a worse result. In gen-
eral, the heuristic works very stable. That means, to prolong the schedule decreases 
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the number of needed FUs. It is difficult to compare the hardware costs in terms of 
adders and multipliers, because from [15] it is unknown in the non-clustered case, 
how many of the used FUs are multipliers and how many are adders. In our architec-
tures the number of multipliers and adders may be a little bit higher, due to the higher 
density of operations in each instruction. On the other hand, the level of ILP is lower, 
which also has an effect on the width of the instruction words. Furthermore, if in [15] 
for a given number of FUs a schedule of a certain length was produced, in many 
cases we found a shorter schedule executable with the same number of FUs as it is 
shown in the following table: 

Table 2. Benchmarks for which in DESCOMP a shorter schedule was found. 

benchmark/length DCT/14 DCT/19 ARF/19 EWF/16 EWF/27 FFT/14 FFT/26 SWIM/18 
DESCOMP length 12 16 14 15 19 13 19 13 

In Figure 6 our results for a non-clustered architecture are compared to the results 
in [15] for clustered-architectures. Interesting is, that for some benchmarks our ap-
proach is better than any clustered architecture in terms of read/write ports and hard-
ware costs. The reason is, that in [15] a bus capacity of two is assumed for inter-
cluster-communication. Thus, two additional read and write ports are required in each 
cluster. E.g., for the benchmarks ARF and EWF our approach produces non-clustered 
architectures having the same number of ports as the best clustered architectures. 
Furthermore, our architecture requires less adders and/or multipliers.  

There are many cases where the number of ports is not reduced however, the total 
number of multipliers, adders and subtractions is. Since each cluster needs its own 
FUs, in a clustered architecture the total number of FUs is higher than in a non-
clustered architecture. In fact, for these cases the non-clustered architecture is not able 
to reach the performance of the clustered one, but the results indicate, that port shar-
ing by arbitrary FU types should be explored to reduce the number of ports in the 
register file. This may lead to a cheaper architecture. 
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190      Mario Schölzel and Peter Bachmann 

All the results where obtained automatically. The runtime ranges between less than 
one second and 3 minutes on a PC with 1.5 GHz, depending on the DFG. For longer 
schedules the runtime grows, due to more flexibility in the scheduling stage.  

In a second preliminary test we used our approach to produce an architecture 
which is tailored to several basic blocks. The used basic blocks were SWIM1, ARF 
and MD5. Using the MD5 example eight operation types must be performed by the 
architecture. Each of the benchmarks represents a single program fragment. The exe-
cution frequency of each basic block and the time constraints as well as the used ��� 
function are shown in Table 3 and Table 4. 

Using an exhaustive search for an appropriate combination of these operation 
types in FUs (knowing that four FUs are required) more than 4
109 architectures must 
be considered. Using our algorithm 59 schedules were computed. It followed that the 
final architecture needs four FUs, due to the requirements of the SWIM benchmark. 
For SWIM a schedule of length 7 was selected. Each longer schedule would fail the 
timing requirements. This schedule already requires 3 multipliers, 2 adders and 2 
subtractions. 

Table 3. Assumed constraints of the used benchmarks in the second benchmark configuration. 

program fragment time constraint in ms execution frequency 
MD5 5 500 

SWIM1 5 50000 
ARF 10 10000 

Table 4. rpf-function in the used example. 

Ports 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
MHz 100 95 90 85 80 75 70 65 60 55 50 42 34 25 16 10 5 
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Fig. 6. Comparing clustered architectures from Lapinskii to non-clustered from DESCOMP. 
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For ARF as well as for MD5 the longest schedule would meet the timing con-
straints. The search for the best architecture starts with the configuration , where 

o: + - * and or not xor shl 
a(o): 4 3 4 2 1 1 2 1 

This configuration was chosen, because the shortest schedule for ARF with 4 FUs 
would require 4 multipliers and 4 adders. The same holds for the MD5 benchmark 
respectively. After performing the search algorithm (which stopped after less than 1 
second) the required operation types could be reduced as shown in the following 
configuration �: 

o: + - * and or not xor shl 
b(o): 2 2 3 1 1 1 1 1 

Using this configuration, for SWIM1 a schedule of length 7, for ARF a schedule of 
length 10 and for MD5 a schedule of length 17 was selected. In the final architecture 
FU 0 implements the operation types {+, *}, FU 1 implements {-, 
�, �#�}, FU 2 
implements {��, +, *} and FU 3 implements {+, -, *, %
�, �
�}. Except for addition, 
this architecture uses no more resources than the schedule of length 7 for SWIM and 
the longest schedules for ARF and MD5. However, it uses one more adder because of 
the interdependencies between operation types in different instructions. This problem 
could be solved by relaxing the length of the schedules within a program fragment 
(e.g. for ARF and MD5) as long as the performance constraints are met and the com-
plexity of the interference graph (e.g. the number of edges) is reduced. However this 
is currently not done and remains to solve.  

4   Conclusion 

We presented an approach for a fully automated Design-Space-Exploration. The 
strategies to optimize the architecture for a single basic block are similar to the ones 
in HLS, but the optimization goals differ. Compared to other DSE approaches, we 
have to compute a schedule only a few times. The complexity, which arises in many 
DSE approaches from the combinatorial multiplicity of the operation types in FUs is 
avoided in our approach. Nevertheless, all FU types are fully explored. The good 
results at the level of basic blocks also leads to good results for optimizing an archi-
tecture for more than one basic block. Thus, we believe, that our DSE approach is a 
good method to explore VLIW architectures in short runtimes. Although we have 
shown, that in some cases our obtained non-clustered architecture is better than every 
clustered architecture, in the future we will extend this approach also to explore clus-
tered architectures, with respect to the maximal number of read/write ports in a regis-
ter file, including the number of ports for inter-cluster communication. 
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Abstract. Microprocessor design is a considerably complex task. First,
microprocessors include many resources that may be configured in differ-
ent ways. This leads to a time consuming multi-objective optimization
problem. Second, currently the designs must take into account not only
performance but also power consumption thus making the optimization
goal more complex. Third, different types of applications have different
demands but producing several different microprocessors would not be
cost effective.
This paper proposes an efficient algorithm to explore the design space:
design space navigation. With this algorithm it is possible to obtain op-
timal configurations by starting from a baseline and “navigating” on the
design space. Different configurations tailored for different applications,
but derived from the same baseline, are called neighboring configurations.
Experimental results show that navigation finds designs that achieve bet-
ter power-performance efficiency for a fraction of the time required by
other design space exploration algorithms. Also, the algorithm is used
to obtain four neighboring configurations for four types of applications:
multimedia, integer and floating-point scientific, and database workloads.
The results showed that the navigation configuration achieves a power-
performance improvement of 30% to 118% depending on the workload.
Using different workloads for navigation and execution may result in a
loss of efficiency of as much as 94%.

1 Introduction

Power has recently become an important factor in microprocessor design for
both mobile devices as well as high-performance systems [1]. Mobile devices are
required to operate consuming as little energy as possible in order to increase the
battery life. For high-performance systems, although mobility is not a concern,
the energy consumption of a large scale system may be an issue. Furthermore,
high frequencies result in increasing average and peak power, which may lead
to problems in power dissipation and consequently a reduction in the reliability.
Therefore, architects have to find the correct balance between power and per-
formance. The goal is to find system configurations that are efficient in terms
of the power consumed for the performance achieved. For high-performance
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systems, such as the one analyzed in this work, the most appropriate power-
performance efficiency metric is determined as MIPS3/WATT as presented by
Brooks et al. [2], where MIPS represents performance in million instructions per
second and WATT represents average power consumption in Watt. Through-
out this paper the term power-performance efficiency or efficiency refers to the
MIPS3/WATT value.

To achieve high efficiency the architect may configure several parameters in
the microprocessor such as caches, arithmetic units, and reorder queues, among
others. Due to the large number of parameters and the large set of values each
parameter may take, a full design space exploration is unfeasible. The main
contribution of this paper is a simple algorithm that explores the design space
in an efficient and effective way. A second contribution is the use of such an
algorithm to tailor a state-of-the-art, high-performance baseline configuration
to the needs of each workload.

Several previous works have addressed the issue of optimizing the multi-
objective exploration of the design space. Fornaciari et al. [3] proposed to ef-
ficiently find cache configurations by exploring each parameter independently.
This technique reduces significantly the search but it assumes that parameters
are independent from each other. Palesi and Givargis [4] proposed the use of
genetic algorithms to prune non-optimal subspaces from the complete design
space. The authors explored their technique for the design of system-on-chip
(SoC) architectures. Palermo et al. [5] use a random search tuned to derive an
approximation of the Pareto-optimal curves. Agosta et al. [6] use Pareto Simu-
lated Annealing in order to derive the efficient configuration. Kin et al. [7] use
branch-and-bound techniques to reduce the design space exploration for medi-
aprocessors.

Our proposed technique is simpler, and consequently less time consuming
than the previously proposed techniques and at the same time more appropriate
to find configurations that derive from a common baseline. We call these configu-
rations “neighboring” configurations. These configurations are relevant in order
to reduce manufacturing costs for the “tailored” configurations. A commercial
example is the Intel Xeon and the Intel Pentium 4. Both processors share the
same platform but the Xeon is tailored for the high-end servers. In addition to
the above facts, in this work, a wider range of workloads is used together with
the proposed exploration algorithm in order to prove the need to obtain different
efficient configurations.

Other studies have proposed power-performance efficient configurations but
they usually focus on the optimization of a single parameter. Also, power-aware
studies concentrate mostly on scientific workloads [2, 8–17], while only few works
focus on other workloads such as multimedia [7, 18, 19] and spatial databases [20].
The work presented in this paper is broader than these works in the sense that
a general design methodology is proposed for multi-objective exploration of a
large design space.

In order to test the proposed navigation algorithm, the different configura-
tions are evaluated using a power-aware architecture simulator. The navigation
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design space exploration is performed for four different workloads: multimedia,
integer scientific, floating-point scientific, and database. The results show that
the configurations obtained using the navigation algorithm achieve a power-
performance efficiency increase of 30% to 118% depending on the workload. This
was achieved at a fraction of the time for exhaustive design space exploration.
In addition, it is very relevant to use the same configuration for both navigation
and execution, otherwise it may result in an efficiency loss of up to 94%

The paper is organized as follows: Section 2 presents different design space
exploration algorithms, Section 3 describes the experimental setup, Section 4
discusses the results obtained, and Section 5 presents the summary and the
conclusions for this work.

2 Design Space Exploration

This section presents several approaches to the exploration of the microprocessor
design space. The goal is to find a design that is optimized for a certain metric.

For the analysis described in the following sections consider that the design
space is composed of a set P of modifiable parameters and where each parameter
pi may have one of ni values. For example, two different parameters are the size
of the L1 I-Cache and the number of integer ALUs. The L1 I-Cache may have,
for example, seven sizes: 4KB, 8KB, 16KB, 32KB, 64KB, 128KB, and 256KB.
The number of ALUs may be one of the four values: 1, 2, 4, or 8. To test the
configurations, a set of applications A is used where each application ai has an
execution time of ti. This is the time required for finding the value for the metric
used in evaluating the different configurations. In the case of this work it is the
simulation time.

2.1 Exhaustive and Restricted Exploration

The first approach is to perform an exhaustive exploration of the design space.
Although this approach will result in the configuration that achieves the optimal
value for the desired metric, it requires a very long execution time to find it.
Unless the design space is small, this technique is not feasible. The execution
time for this exploration algorithm to complete may be expressed by the following
equation:

|A|∑
i=1

ti ×
|P |∏
i=1

ni (1)

In this equation, the first factor represents the workload execution time while
the second factor represents the number of experiments necessary to cover the
design space.

Given that the time to find a solution using the previous algorithm is not
feasible for most common cases, one solution is to restrict the number of param-
eters to explore. In this algorithm, the design space is still exhaustively searched
but within a smaller set of parameters. The challenge for this algorithm to be
successful is the selection of the appropriate set of parameters to explore. One
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option would be to select the parameters randomly. We call this algorithm the
Random-Restricted Exploration or R-Restricted. Nevertheless, as a single random
pick does not guarantee that the solution will be a relevant one, this algorithm
may be enhanced by picking s different random sets (P1 to Ps) of m parame-
ters each. In this case the execution time for this exploration algorithm is the
following:

|A|∑
i=1

ti ×
s∑

i=1

⎛
⎝|Pi|∏

j=1

nj

⎞
⎠ (2)

Instead of the random pick, a simple heuristic may be used. The heuristic
is based on the fact that intuitively the set of relevant parameters is the set of
parameters that independently achieve the largest benefits. In order to determine
which are these parameters there is a need to do a parameter potential analysis of
the different parameters and rank the results. Consequently, it is possible to pick
the first m parameters and select them as the subset for the space exploration.
This subset is represented as P ′. The resulting algorithm is called Controlled
Restricted Exploration or C-Restricted. Depending on the number of parameters
selected, the execution time may be reduced significantly. The execution time
may be expressed by the following equation:

|A|∑
i=1

ti ×
⎛
⎝1 +

|P |∑
i=1

(ni − 1)

⎞
⎠ +

|A|∑
i=1

ti ×
|P ′|∏
i=1

ni (3)

In this equation, the first term represents the execution time to complete the
parameter potential analysis. Notice that the 1 represents the execution of the
baseline configuration and the (ni −1) accounts for excluding this same baseline
configuration multiple times. The second term represents the execution time for
the exploration of design space with set P ′.

2.2 Independent Exploration

This algorithm assumes that each parameter is independent from each other.
Consequently, each parameter may be studied independently and then the value
giving the best result may be selected for the final configuration. The number of
experiments required for this technique is small and is the same to the parameter
potential analysis above mentioned. The major issue with this algorithm is the
fact that in reality parameters are not independent, specially if they are param-
eters from the same resource (e.g. cache size and associativity). The execution
time for this algorithm may be represented by the following equation:

|A|∑
i=1

ti ×
⎛
⎝1 +

|P |∑
i=1

(ni − 1)

⎞
⎠ (4)

This algorithm may be enhanced with extra experiments in order to guar-
antee that the change of a new parameter in the configuration is only accepted
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if it results in an improvement of the desired metric. We call this algorithm the
Controlled Independent Exploration or C-Independent. This algorithm may be
performed on a subset P ′ of the parameter set P . The execution time for this
algorithm may be represented as:

|A|∑
i=1

ti ×
⎛
⎝1 +

|P |∑
i=1

(ni − 1)

⎞
⎠ + (|P ′| − 1) ×

|A|∑
i=1

ti (5)

2.3 Navigation

Navigation is a proposed algorithm that aims in finding a configuration that
achieves an optimization for the desired metric with a small execution time cost.
The first step of this algorithm is to try all the possible configurations around
the baseline. This way, for each parameter pi, if xi is the parameter value for
the baseline configuration, we will have the metric results (efficiency) for both
values xi−1 and xi+1. We call the relative difference between the efficiency for
those values and the baseline the slope. After testing all parameters it is possible
to order the parameters according to the slope observed. This ranking is used to
“navigate” the configuration from the baseline to the optimized one.

At each step the parameter with the highest slope, which has not been an-
alyzed yet, is chosen. New configurations are tested along the direction of the
highest slope. “Traveling” along that parameter finishes when the configuration
results in a smaller efficiency value than the previous one. At this point the
configuration is updated with the last value of the considered parameter. The
navigation algorithm continues with the parameter that has the next higher
slope. This method guarantees that the final configuration achieves a higher effi-
ciency than the baseline and it also ensures that it converges fast to the optimum
value. As the efficiency monotonically increases for the different configurations
obtained with this algorithm, it is possible to stop its execution at any step which
may be satisfactory. Therefore, in practice, the exploration is performed for a
subset P ′ of the original parameter set. Notice that if the design space contains
many optima, the value found by this technique is one of those, not necessarily
the best one. Nevertheless, the objective was to determine the “neighboring”
configurations. The execution time for the proposed navigation algorithm may
be expressed by the following:

(1 + 2 × |P |) ×
|A|∑
i=1

ti +
|A|∑
i=1

ti ×
|P ′|∑
i=1

ni − 1
2

(6)

The first term represents the experiments to find out the slope values for
all the parameters. The second represents the navigation algorithm experiments.
Notice that instead of testing all the values for a certain parameter, the slope
information is used to determine which “side” should be used for “guiding” to
higher efficiency configurations. This way it is expected that in the worst case,
only half of the values are tested and hence the (ni − 1)/2.
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3 Experimental Setup

In order to evaluate the different configurations we collect the performance and
power values for our analysis, using Wattch [9], an execution-driven simulator
that is based on the SimpleScalar [21] simulator. In addition to the architecture
metrics that are the output of SimpleScalar, Wattch returns, among other in-
formation, the average power, the peak power and the energy for the execution
of a particular application on a certain architecture configuration. Wattch also
presents a breakdown of power into the different microarchitecture components.
In all results, the power values collected are Wattch’s realistic conditional clock-
ing (cc3 ) where the power of a certain component is determined as the sum
of two values: active and passive. The active value refers to the active portion
of the component, which is directly proportional to the use of the component.
The passive value accounts for the power leakage of the inactive portion of the
component. The power models used in Wattch are based on the models from the
CACTI cache optimization tool [22]. A validation of Wattch’s power models has
been presented by Brooks et al. [9]. That work shows that the accuracy obtained
by the simulator is within 10% of the real results.

The architecture simulated was a standard MIPS-like architecture (PISA).
The processor’s characteristics are comparable to an Intel Xeon. The configu-
ration parameters are presented in the central column of Table 1. In addition
to the baseline configuration we also present the ranges that were used in the
experiments for the parameter potential study. These values are shown in the
right column of Table 1.

Table 1. Configuration parameters for the processor: baseline and range of parameters
for the experiments.

baseline range

Frequency / Voltage / Technology 3GHz / 1.9V / 0.10-micron —

L1 I-Cache, (il1) (size) 32KB, 4-256KB,
L1 D-Cache (dl1) (assoc) 2way, 1-32way,

(block) 32B, 8-64B
1 cycle hit —

L2 Unified (ul2) (size) 2MB, 256KB-16MB,
(assoc) 8way, 1-64way,
(block) 64B, 32-512B

12 cycle hit —

Memory speed / bus width 800MHz 32ns / 8B —

Int units (alu) (ialu) 4alu 1-8alu
(imult) 2mult 1-8mult

FP units (alu) (fpalu) 4alu 1-8alu
(fpmult) 2mult 1-8mult

Execution / Fetch queue out-of-order / 16 —

Decode, issue, commit (ilp) (issue) 8 1-64

Reg update / Load-Store (ilp) (ruulsq) 128 / 64 32-512 / 16-256



Neighboring Power-Performance Efficient Microprocessor Configurations 199

The parameter potential study is performed by executing several sets of ex-
periments, where each set is characterized by the fact that only the value of a
single parameter is modified. This means that a set of experiments is performed
by varying a single parameter within a range while maintaining the values of
all the remaining parameters constant. Notice that in some cases the range of a
component is limited by the baseline configuration. For example, the number of
integer units cannot be set larger than 8 as this is the issue width for the baseline
configuration. Also, the cache block sizes of a specific cache are dependent on
the block sizes of the upper and lower level caches.

The target applications for our power and energy analysis come from three
different benchmarks: MediaBench [23], SPEC CPU2000 [24], and TPC-H [25].

Seven applications from MediaBench were selected to represent a multime-
dia workload (media): g721encode, gsmdecode, gsmencode, mesamipmap, mesaos-
demo, mpeg2decode and unepic. Six applications from SPEC CPU2000 were se-
lected to represent a scientific workload: gcc, gzip, parser, art, equake, and mesa.
The three first scientific applications represent an integer workload (specint)
while the three last applications represent a floating-point workload (specfp).

For the execution of the TPC-H queries we used PostgreSQL version 7.1.2.
The data loaded into the database was the benchmark’s standard data generated
with dbgen and scaled down by a factor of 20 to a total of approximately 50MB
for the raw data (tables). We created indexes on every key attribute of the
data tables. From this benchmark two queries were selected: Q9 and Q12. This
workload is represented as tpch in the rest of the paper.

The total number of instructions executed ranges from approximately 10 to
500 million for the MediaBench applications, 1 billion for the SPEC applica-
tions, and 1.5 to 3.5 billion for the TPC-H applications. Both the MediaBench
and TPC-H applications were simulated for their complete execution, while the
simulation of the SPEC applications was skipped for the first billion instructions.

Notice that the system setup is done in such a way that the input data for
the different applications completely fits in the main memory. This is not a limi-
tation as the current high-performance systems are equipped with large memory
allowing the efficient in-core execution even for large applications [26, 27].

4 Experimental Results

4.1 Potential Analysis and Parameter Ranking

One of the first steps in many of the design space exploration algorithms is to
identify which parameters are more relevant for optimization in terms of the
considered metric. For this work the metric considered is the power-performance
efficiency for a high-end system. According to Brooks et al. [2], as it was already
mentioned in Section 1, the most appropriatemetric in this case is MIPS3/WATT.

For this work we perform a potential analysis of the different parameters in
terms of the power-performance metric. This analysis is performed by varying
the various parameters “around” a baseline configuration. In this work, Effi-
ciency Potential of a parameter p is defined as the relative difference between
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Fig. 1. Parameter ranking for media, specint, specfp, and tpch workloads.

the maximum efficiency obtained for a certain value of p and the efficiency for
the baseline configuration. According to this definition, a parameter potential of
zero represents a case where changes in parameter p result in efficiency values
that are smaller or equal to what is achieved for the baseline case. The equation
for the Efficiency Potential can be expressed as follows:

Efficiency Potential(p) =
maxEff(config(p = pi)) − Eff(baseline)

Eff(baseline)

The parameter ranking is obtained by ordering the parameter potential re-
sults. The ranking for the four different workloads is presented in Figure 1. The
x-axis contains the different parameter names while the y-axis presents the po-
tential for each parameter. The parameter names are a concatenation of the
parameter category and its resource as presented in Table 1.

The results in Figure 1 show that, considering only the first parameter in
the rank, specint is the workload that shows the least potential for improvement
with a parameter potential of 13% for ilp-ruulsq, while tpch is the workload with
the highest potential with a parameter potential of 73% for il1-size. The same
conclusion may be taken if instead of considering only the best parameter we
consider the aggregate of all parameters that achieve a potential larger than 5%.
For tpch there are ten parameters that fulfill that criteria with an aggregate of
196%, while specint has only one parameter with 13%.
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Also important to notice is the fact that the parameters related to the L1
I-Cache occupy the first positions of the ranking of every workload. This is more
relevant for both tpch and specfp, which may be justified by the fact that the
miss-per-thousand-instructions is much higher for these two workloads (2x and
13x, respectively). In addition, the ALU parameters dominate for the media and
specfp workloads. For tpch, the dominant parameters are mostly the ones related
with the three caches L1 I- and D-Cache and L2 Cache. It is interesting to note
that, although not apparent from the depicted results, while the trend for the
L1 I-Cache is to achieve larger efficiency values for larger configurations, the L1
D-Cache achieves larger efficiency for smaller configurations.

4.2 Design Space Exploration

In order to compare the different algorithms presented in Section 2, Figure 2
presents the relative efficiency increase, compared to the baseline, obtained for
the best configuration found with the different exploration algorithms (configi).

Efficiency Increase =
Eff(configi) − Eff(baseline)

Eff(baseline)

The bars in Figure 2-(a) represent the relative efficiency increase for the con-
figurations found with the different exploration algorithms for the mpeg2decode
application of the media benchmark: Random Restricted using 3 parameters (r-
restrict3), Controlled Restricted using 3 parameters (c-restrict3), Independent
using 6 parameters (indep6), Controlled Independent using 6 parameters (c-
indep6), and Navigation using 6 parameters (nav6). The line in the same figure
represents the relative execution time, compared to r-restrict3, for all the dif-
ferent algorithms. From this Figure it is possible to observe that the exhaustive
search algorithms have a much larger execution time and still their configura-
tions do not achieve as high efficiency as with the rest of the algorithms. This is
mainly due to the fact that the exhaustive algorithms used a more restricted set
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Fig. 2. Efficiency increase of the configuration found with: (a) the different exploration
algorithms for the mpeg2decode application (media) and (b) independent and navigation
exploration for all the workloads.
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Table 2. Execution time in minutes for the different exploration algorithms running
on a Intel Pentium III 1GHz. In parenthesis, next to the algorithm name are shown
the number of parameters used in the exploration.

experimental model
Algorithm mpeg2dec mpeg2dec all

Exhaustive — 4.0 × 1011 3.1 × 1013

R-Restricted (3p) 3496 3209 252360

C-Restricted (3p) 1440 1391 109356

Independent (6p) 597 597 46266

C-Independent (6p) 652 642 49771

Navigation (6p) 397 394 30284

of parameters for their configurations. As for the independent and navigation
algorithms, their configurations achieve the highest efficiency and it is impor-
tant to observe that navigation achieves it with slightly more than half of the
execution time from c-indep. Table 2 contains the detail execution time for the
different algorithms.

The results in Table 2 for the mpeg2decode application show that the equa-
tions presented in Section 2 model accurately the experimental results (error
ranging from 0 to 8%). In addition, the table also shows the execution time for
determining the configurations for all the applications of all workloads.

Figure 2-(b) presents the efficiency for the different configurations obtained
with both the independent and the navigation algorithms for each workload.
It is possible to observe that the configurations obtained with navigation al-
ways achieve the highest efficiency. Although the difference between the two
approaches seems relatively small (7 to 32%) it is important to notice that nav-
igation always guarantees a higher efficiency than independent. Furthermore,
navigation finds the configurations faster than independent (39% reduction for
all workloads.)

It is relevant to observe that using navigation on the same baseline but for
different target applications allows to the algorithm to find configurations that
achieve large increases in the efficiency, from 30 to 118%, depending on the
workload.

Another interesting result is the convergence of the navigation algorithm as
a function of the number of parameters added to the algorithm. Figure 3 shows
the efficiency for each configuration while increasing the number of parameters
in the algorithm.

Overall it is possible to conclude that the navigation algorithm is the one
resulting in the configurations that achieve the same or better efficiency and
faster than the time necessary for the other algorithms.

4.3 Designing for Different Applications

As it was previously mentioned, an application for the navigation algorithm is
the design of “neighboring” configurations for different workloads.
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Fig. 3. Efficiency increase of the configuration found with the navigation exploration
algorithms for an increasing number of parameters for all four workloads.

Table 3 presents the changes in the baseline configuration in order to obtain
the power-performance efficient configurations for the different workloads. These
configurations were obtained using the navigation algorithm for seven parame-
ters and they all start from the same high-performance baseline configuration
described in Section 3.

From Table 3 it is possible to observe that all workloads require changes in
the L1 I-Cache with media and tpch requiring larger cache sizes. For L1 D-Cache
the trend is the opposite as it decreases its size to 8-16KB for all workloads
except tpch. Finally, the efficient configurations for all workloads except tpch
require a larger number of integer ALUs.

The fact that each workload requires its own tuned configuration in order to
achieve high power-performance efficiency is apparent from the results depicted
in Figure 4.

Table 3. Power-performance efficient configurations for media, specint, specfp, and
tpch.

parameter baseline media specint specfp tpch

L1 I-Cache 32KB 64KB 128KB
2way 8way 4way 4way 16way
32B 64B

L1 D-Cache 32KB 8KB 16KB 8KB
2way
32B 64B 64B

L2 Unified 2MB
8way 16way
64B 512B

Int units 4alu+2mult 8alu 8alu 8alu

FP units 4alu+2mult 8mult 1alu 8mult

RUU/LSQ 128/64 64/64 64/32
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Fig. 4. Efficiency of the configuration found with the navigation exploration algorithm
for the different workloads.

This figure presents four bars for each workload. Each of the bars represents
the relative efficiency increase for the configuration obtained using navigation
and tailored for the media (nmedia), specint (nspecint), specfp (nspecfp), and
tpch (ntpch) workloads respectively. From the results in Figure 4 it is interesting
to notice that although the configurations for media and specfp may be used
interchangeably for those two workloads with an efficiency loss of at most 10%,
the same does not apply to the rest of the workloads. For media, if another con-
figuration is used it may result in a loss of at least 94% (using tpch configuration
for media execution.)

Overall it is relevant to notice that each workload requires its own configu-
ration in order to achieve maximum efficiency. The use of a configuration that
was tuned to another application may result in large penalties.

5 Conclusions

This work presented a simple technique to explore the microprocessor design
space, for multiple parameters, in order to obtain power-performance efficient
configurations. Using the navigation algorithm it is possible to obtain efficient
configurations at a fraction of the time required for other exploration techniques.

Due to its algorithm, with navigation design space exploration the configura-
tions obtained are “neighbor” to the original baseline configuration. This makes
it easier for manufacturers to adopt these configurations as they reflect small
deviations from a common baseline. Using the correct workload for the guiding
process seems essential as configurations navigated using workloads other than
the executing one may result in penalties up to 94%.

Experimental results have also shown that compared to a high-performance
baseline configuration, the configurations obtained with navigation design space
exploration for the different workloads, differ mostly on the configurations of
the L1 I-Cache. Depending on the workload, these configurations achieve an
efficiency increase of 30 to 118%.
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Abstract. The management of energy consumption in battery-operated
embedded and pervasive systems is increasingly important in order to
extend battery lifetime or to increase the number of applications that
can use the system’s resources. Dynamic voltage and frequency scaling
(DVFS) has been introduced to trade off system performance with energy
consumption. For real-time applications, systems supporting DVFS have
to balance the achieved energy savings with the deadline constraints of
applications. Previous work has used periodic evaluation of an applica-
tion’s progress (e.g., with periodic checkpoints inserted into application
code at compile time) to decide if and how much to adjust the frequency
or voltage. Our approach builds on this prior work and addresses the
overheads associated with these solutions by replacing periodic check-
points with iterative checkpoint computations based on predicted best-,
average-, and worst-case execution times of real-time applications (e.g.,
obtained through compile-time analysis or profiling).

1 Introduction

Motivation. Energy management has become a central issue in the embedded
systems domain, where an increasing number of devices, including personal dig-
ital assistants, cell phones, medical equipment, and solar-powered systems, are
supported by rechargeable batteries. If applications have stringent requirements
for high performance or real-time guarantees, the energy consumption of these
devices has to be carefully balanced with the resource utilization and applica-
tion needs. Efficient energy management can result in reduced battery specifi-
cations (resulting in smaller and lighter devices), maximized battery lifetime,
and increased mission duration. Fortunately, embedded applications can take
advantage from a multitude of novel energy saving techniques. At the hardware
level, consider the StrongARM SA11xx processors, the Intel XScale 80200, or the
Transmeta Crusoe with LongRun, all of which support the run-time selection of
different frequency or voltage levels [10, 14]. At the network level, wireless cards
and disks are built with support for multiple power modes, i.e., these devices can
be switched into a power-saving mode when idle [6]. Finally, at the application
level, energy-aware transcoding and adaptation techniques [12, 17] reduce the

M. Beigl and P. Lukowicz (Eds.): ARCS 2005, LNCS 3432, pp. 207–221, 2005.
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computation or communication needs, and therefore, the energy requirements of
these applications. The energy management approach addressed in this paper
is the frequency and voltage scaling capabilities of modern mobile processors.
Consider a multimedia application in which a mobile device receives one or more
video and audio streams that have to be replayed with certain requirements for
constant rates and maximum jitter to ensure sufficient quality. This requires that
the device allocates sufficient processor and network resources to these applica-
tions. However, especially with wireless communications, it is likely that video
and audio frames will arrive in bursts, where the receiving device will buffer in-
coming data until their replay time has arrived. Based on the desired replay rate,
a deadline for the replay of each frame can be derived. If the CPU is not fully
utilized, frequency or voltage scaling can be used to slow down the execution of
the video and audio players, therefore reducing the energy consumption of the
device, while still ensuring the timely replay of video and audio.

Problem Statement. Previous work has introduced approaches to dynami-
cally change the speed or voltage at different layers of an embedded system, e.g.,
as compile-time tool or as operating system extension. These approaches predict
application run-time – e.g., from information collected through code analysis –
and compute a clock frequency or voltage accordingly. However, variations in the
run-time, caused by changes in the application behavior, input variables, or by
resource scarcity, can lead to mispredictions, resulting in missed deadlines or inef-
ficient energy management. Therefore, these approaches monitor the progress of
a real-time application, e.g., by inserting checkpoints [3] or hints [1] into the appli-
cation code or by comparing the progress to statistical application behavior [5].
As a result, speed or voltage are adjusted to compensate for these variations.
Our approach builds on this prior work and addresses the overheads associated
with these solutions, which stem from two sources: (a) cost of checkpointing and
progress evaluation and (b) cost of frequency and voltage adjustments. For exam-
ple, in the device used in this work, every time the clock frequency is adjusted,
all devices fed by it (e.g., LCD controller, DMA controller, serial controllers,
OS timer) ‘freeze’ for a duration of 150μs and the subsequent synchronization
of memory requires up to 20ms. It is to expect that newer devices will reduce
these overheads, however, inefficient energy management approaches can lead
to a large number of frequency adjustments, e.g., a process running for 500ms
with run-time evaluations every 10ms could potentially experience 50 frequency
adjustments during its execution. Instead, the goal should be to minimize the
energy and time penalties caused by frequency adjustments, to maximize the
number of process deadlines met, and to maximize the energy savings achieved.
Simulations or models used in previous research fail to capture these significant
overheads of ‘real’ hardware, therefore, in this paper we perform actual measure-
ments on a handheld device to capture the overheads associated with dynamic
frequency scaling. To control the overheads, we replace periodic checkpoints
with an approach that iteratively computes checkpoints based on the best-case
execution time (BCET), average-case execution time (ACET), and worst-case
execution time (WCET) of a real-time application. These times can be obtained
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through compile-time code analysis, or through off-line or on-line profiling. For
simplicity, we can estimate the average case with ACET = (W CET +BCET )/2.
At each checkpoint, the application progress is evaluated, a new clock frequency
or voltage is calculated and set if required, and a new checkpoint is computed.
This reduces the number of checkpoints and potential speed or voltage changes,
e.g., our results show that the number of frequency changes is reduced to about a
quarter for the experimental scenario used in this paper. This approach assumes
an embedded real-time system, where tasks execute until completion (e.g., using
an EDF scheduler). The approach introduced in this paper is evaluated with
an application from the scientific visualization domain. An embedded device re-
ceives visualization data in form of points and lines that are to be displayed.
Using profiling we derive a relationship between the number of lines in an image
and the application run-time for the best-, average-, and worst-case scenarios.

2 Dynamic Frequency Scaling for Real-Time Applications

Dynamic voltage and frequency scaling (DVFS) has been introduced to trade off
system performance (i.e., application execution time) with energy consumption.
While this paper focuses on frequency scaling, the approach introduced here is
similarly applicable to devices with voltage scaling capabilities. The processor
under consideration in this paper is a StrongARM SA1110 processor and the
device used in this work is a Compaq iPAQ H3870 handheld with 32MB RAM,
32MB Flash, and an Orinoco Gold 11Mbps wireless card. The processor supports
11 clock frequencies ranging from 59MHz to 206.4MHz in 14.7MHz steps, the
default frequency being 206.4MHz. The device runs the familiar Linux distri-
bution version 0.7.1 with a 2.4.19 kernel. Figure 1(a) compares the application
run-time of a simple test application (i.e., a for-loop with 107 iterations) at
11 different clock frequencies, showing how the application run-time increases
with lower frequencies. In contrast, Figure 1(b) shows the energy consumption

 0

 1

 2

 3

 4

 5

 40  60  80  100  120  140  160  180  200  220

Ru
n-T

im
e (

se
co

nd
s)

Clock Frequency (MHz)

 0

 0.5

 1

 1.5

 2

 2.5

 40  60  80  100  120  140  160  180  200  220

En
erg

y (
J)

Clock Frequency (MHz)

(a) (b)

Fig. 1. (a) Application run-time and (b) device energy consumption as a function of
clock frequency.
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E(Joule) = Pactive ∗Tactive + Pidle ∗Tidle of the device for the same application,
where the shown energy is the sum of the ‘active’ period of the device (i.e.,
when an application is executed) and the ‘inactive’ or ‘idle’ period of the device
over a period of 3.09s (the execution time of the application at the lowest clock
frequency). For real-time applications it is important to select a clock frequency
that allows these applications to meet their deadlines. However, uncertainties in
application run-times (e.g., caused by variations in input data, the number of
interrupts, etc.) would require that clock frequencies are selected such that all
applications can meet their deadlines even for their worst-case execution times.
However, this pessimistic approach will not fully exploit the potential energy sav-
ings, particularly if average-case and worst-case executions vary greatly. Other
approaches, therefore, use dynamic evaluation of an application’s progress and
adjust the clock frequency if required, e.g., to speed up if the application is at risk
of missing its deadline or to slow down to ensure optimal energy savings if an ap-
plication is ‘faster’ than expected. Approaches such as profiling and compile-time
analysis [1, 3, 16] are used to predict and monitor the run-time of an applica-
tion. In [1, 3], the authors use checkpoints or hints at certain code locations to
estimate the remaining execution time. However, frequent checkpoints can result
in significant overheads, caused by the frequent progress evaluation and by the
frequency changes. The goal of this paper is therefore to minimize the overheads
by delaying progress evaluations and frequency changes until the latest possible
times. Figure 2 compares the original periodic approach with the iterative ap-
proach introduced this work. In the original approach, checkpoints are placed at
regular intervals, where at each checkpoint it is decided if and how to change the
clock frequency. In contrast, an iterative approach uses knowledge of best-case
and worst-case execution times to determine the latest possible time for progress
evaluation. At this point, the clock frequency can be adjusted if required and a
new checkpoint, based on the remaining best- and worst-case execution times,
is calculated. The idea is that early progress evaluations (i.e., before the loca-
tion of the checkpoint computed in our approach) are unnecessary and only cause
overheads through frequent progress evaluations and frequency adjustments. For
example, variations in run-time detected by early checkpoints could result in fre-

original approach:

iterative approach:

Deadline

Deadline

Period

Task Execution

Checkpoints

time

time

Fig. 2. Progress evaluation with checkpoints.
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quency changes that have to be reversed later on because of other variations.
Further, the accuracy of progress evaluation and frequency adjustments depend
on the accuracy of checkpoint placement, i.e., an error in checkpoint placement
could result in erroneous progress evaluations and undesired frequency switches.
With the iterative approach, the number of checkpoints are significantly reduced,
thereby reducing the negative effects of inaccuracies in progress feedback.

3 Iterative Checkpoint Computation

Assumptions and Definitions. The basis of our approach is the knowledge of
the best-case execution time (BCET) and the worst-case execution time (WCET)
of a given real-time application. Approaches to obtain these numbers include
compile-time code analysis and profiling; the latter being used in this paper.
Further, the average-case execution time (ACET) of an application is used to
compute an appropriate clock frequency. ACET can be obtained in the same
manner BCET and WCET are obtained, however, for simplicity, we assume
that ACET is the arithmetic mean, i.e., ACET = (BCET + W CET )/2. The
maximum deviation from the mean is then (W CET − BCET )/2, which we
denote as Δt. We assume that an application deadline Td is either expressed
explicitly (e.g., by the application) or derived from the application context, e.g.,
from the replay rate of a video player. The processor supports multiple clock
frequencies in the range from fmin to fmax; through off-line measurements we
can obtain a list of scaling factors kn:m to translate application run-times at one
clock frequency to application run-times at any other clock frequency. These
scaling factors are obtained by executing a sample application at all available
clock frequencies and measuring the run-times, i.e., a scaling factor expresses
the ratio of the run-times at two different clock frequencies. For example, an
application run-time of 2s at f4 and a scaling factor k4:2 = 2 translates into a
run-time of 2∗2s = 4s at frequency f2. In the remainder of this document, if not
otherwise indicated, all base times are assumed to be calculated for the default
clock frequency fmax.

Frequency Computation. The goal is to execute a given task Pi with a known
deadline Td at the lowest possible frequency, to allow it to approach the dead-
line as close as possible without missing it. The basis of our computations is
the average case, i.e., we determine the clock frequency to prolong application
execution assuming that the application will require the average-case execution
time (see Figure 3). Therefore, the frequency fx is determined such that the
following requirements are satisfied: (A) ACETmax ∗ kmax:x <= Td and (B)
ACETmax ∗ kmax:x−1 > Td. (A) determines that the average execution time
multiplied by the scaling factor kmax:x (for the transition from fmax to fx) is
at most the deadline and (B) ensures that the selected frequency is the lowest
possible frequency that would not cause the application to miss its deadline,
assuming that the actual run-time will be ACET . Since the clock frequency
can only be selected at discrete steps, the application run-time ACETx (ACET
at the clock frequency fx) will result in the application finishing δ time units
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Power

δ

deadline Td

time

ACET at frequency fx

Fig. 3. Frequency selection for ACET.

before the deadline Td (δ >= 0). Algorithm 1 summarizes the frequency compu-
tation, where available clock frequencies and scaling factors are stored in tables
(‘frequency’ and ‘factor’). The value of index indicates the currently chosen ta-
ble entries and thereby the clock frequency (fmin <= findex <= fmax). The
algorithm is implemented as a function in a C library, which is linked by the
application. This algorithm is executed at the beginning of application execu-
tion, where the application passes the predicted average-case execution time and
the deadline as parameters. The outcome of this algorithm is the selected clock
frequency and the CPU clock is changed accordingly with the set clock system
call, which is caught by a kernel-loadable module that performs the OS-level
clock management tasks.

Checkpoint Computation. Consider Figure 4, which shows the run-times of
process Pi for both the best and the worst case, resulting in the task finishing
Δt + δ time units before the deadline (best case) or Δt − δ time units after the
deadline (worst case). Since these are the both extremes (shortest and longest
paths through the application code), two checkpoints can be computed for these
two scenarios and the earlier one will be the first checkpoint for the evaluation
of the application progress. The remainder of this section shows how the best-
and worst-case execution times are used to determine the first checkpoint.

index = maxindex;
while (index > 0) do

if (ACET ∗ factor[index] <= Td) then
index −−;

else
if (index < maxindex) then

index + +;

end
break;

end
end
set clock(frequency[index]);
return frequency[index];

Algorithm 1. Frequency computation.
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Fig. 4. Best case and worst case task run-times.
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Fig. 5. (a) Desired outcome of frequency selection for best case scenario and (b) check-
point computation.

(a) Best Case: In the best case scenario, an application will require BCETx

at clock frequency fx. Figure 5(a) shows the desired approach, i.e., the task
is executed as long as possible at frequency fx (for Tx time units) and at a
certain – yet to be determined – checkpoint C1, the frequency is switched to
fmin, allowing the application to finish as close as possible to the deadline, i.e.,
Tx + Tmin = Td. That means that – in the case the application requires BCET
– the first part of the task execution will occur at frequency fx (based on the
assumption the application will require ACET ) and the remainder will occur
at fmin, the lowest possible clock frequency. Figure 5(b) shows that scenario,
where ΔTx is an unknown part of the task run-time BCETx, which, if executed
at fmin will satisfy the following equation:

Tmin = ΔTx ∗ kx:min = Δt + δ + ΔTx.

This leads us further to the following formula:

ΔTx = (Δt + δ)/(kx:min − 1).

Then the first checkpoint (when to evaluate a task’s progress for the first time)
is computed with:

C1 = BCETx − ΔTx.

(b) Worst Case: In the worst case scenario, the task finishes after W CETx;
Figure 6(a) shows the desired approach for this case. The task is executed at clock
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Fig. 6. (a) Desired outcome of frequency selection for the worst case scenario and (b)
checkpoint computation.

frequency fx as long as possible (for Tx time units) and at a certain checkpoint
C2 (yet to be determined), the frequency is switched to fmax and the remainder
of the task will require Tmax time units, where Tx + Tmax = Td. Again, this
means that a certain part of the task that would be executed at fx (ΔT ′

x) now
has to be executed at fmax (see Figure 6(b)). We can establish that

Tmax = ΔT ′
x ∗ kx:max = ΔT ′

x − Δt + δ.

Or in words: an unknown time ΔT ′
x of task Ti’s execution (measured at clock

frequency fx) will be executed at the highest possible clock frequency fmax, such
that the deadline will be reached exactly (in the worst-case scenario). This leads
us to the following formula:

ΔT ′
x = (δ − Δt)/(kx:max − 1).

The checkpoint is then computed as follows:

C2 = W CETx − ΔT ′
x.

The earliest of these two checkpoints is now the checkpoint C where the
application progress will be evaluated for the first time:

C = min(C1, C2).

Algorithm 2 summarizes the checkpoint computation, which is performed af-
ter the clock frequency fx is determined. This function issues a system call,
set OS timer, which sets an interrupt service routine in the kernel that will be
executed once the timer expires. At timer expiration, an upcall into the library
is performed, where the application progress is then evaluated.

Progress Counter. Each checkpoint is used to evaluate an application’s prog-
ress. In addition to checkpoints, a compile-time tool must also insert frequent
progress hints into application code, to allow checkpoints to make predictions
on the remaining run-time. The goal of this paper is to minimize the costly
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index = maxindex;
while (index > 0) do

if (ACET ∗ factor[index] <= Td) then
index −−;

else
if (index < maxindex) then

index + +;

end
break;

end
end
set clock(frequency[index]);
return frequency[index];

Algorithm 2. Checkpoint computation.

checkpoints and frequency adjustments, assuming that the ‘hinting’ costs are
negligible. At compile-time, two different functions are inserted into the applica-
tion code: (a) a single call to the function init progress counter at the beginning
of the application, initializing a progress counter to a pre-determined value and
(b) periodic calls to a function called update progress, where each call will decre-
ment the previously initialized value of the progress counter. The initial value
of the progress counter and the positions of the function calls are determined
such that the progress counter can give sufficient information of the status of the
application execution. At each checkpoint, the progress counter is used to eval-
uate the application’s progress. Different approaches for the placement of calls
to update progress can be used, e.g., in [1], the authors use code analysis to
identify optimal locations of such calls. Here, calls are placed a few milliseconds
apart, details about this approach are beyond the topic of this paper. The cost
of each call is a few extra instructions for decrementing an integer value.

Iterative Checkpoint Computation. Once the first checkpoint has been
computed, the process is repeated in the following manner: we consider the re-
mainder of a task’s execution from the first checkpoint to the deadline. The
previously obtained execution times for the best-, average-, and worst-case sce-
narios are adjusted to reflect the progress made and the new values are used to
determine (a) if the clock frequency needs to be adjusted and (b) the location
of the next checkpoint. Algorithm 3 summarizes these steps, which are repeated
until either the value of the new checkpoint or the distance between the deadline
and the new checkpoint are smaller than twice dt, the interval between two con-
secutive calls to the function decrementing the progress counter. In the first case,
instead of computing new checkpoints, we simply evaluate the progress once per
dt and in the latter case we are sufficiently close to the deadline to terminate
the evaluation process.
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index = maxindex;
while (index > 0) do

if (ACET ∗ factor[index] <= Td) then
index −−;

else
if (index < maxindex) then

index + +;

end
break;

end
end
set clock(frequency[index]);
return frequency[index];

Algorithm 3. Recursive frequency and checkpoint computation.

4 Evaluation

Application Profiling. The application under consideration is that of a sci-
entific visualization tool for mobile devices. Here, data streams contain graphic
objects in form of points and lines, which are then displayed and the pixels be-
tween end-points of a line are interpolated. The number of lines determines the
overheads in displaying the images. Each data frame received contains a header
indicating the number of lines in the frame. The relationship between the number
of lines and the application run-times has been determined with off-line profiling
and is shown in Figure 7(a). Using these results we are able to obtain functions
(e.g., with linear regression) to describe the run-times for the best case (rtbc),
the average case (rtac), and the worst case (rtwc), where the number of lines is
indicated by num(l): rtbc = 2.82∗num(l)+650, rtac = 2.86∗num(l)+665, rtwc =
2.90 ∗ num(l) + 680.

These results show that Δt = (W CET − BCET )/2 is almost independent
from the number of lines. We compare these results to the profiling results of
another application, a video decoder, shown in Figure 7(b). Here, the deviations
Δt increase with the size of the data. This increase can be explained with the
larger variation in data content for video streams, i.e., the decompression depends
not only on the data size but also on the image content. The resulting functions
are as follows, where size(d) is the size of the compressed data in kBytes: rtbc =
9.54 ∗ size(d) + 4.6, rtac = 10.98 ∗ size(d) + 8.1, rtwc = 12.42 ∗ size(d) + 8.4.

The experiments are performed on the previously described Compaq iPAQ
handheld and the power measurements are performed with a Picotech ADC-100
PC oscilloscope (100kSamples/s, 2 channels, and 12 bit resolution).

Iterative Checkpoint Computation. The goal of the iterative checkpoint
computation approach introduced in this paper is to reduce the number of
progress evaluations of a running task and the number of frequency changes.
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Fig. 7. (a) Scientific visualization application and (b) video decompression.
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Fig. 8. (a) Current drawn by device for periodic progress evaluation and (b) current
drawn by device for iterative progress evaluation.

Figure 8(a) shows a snapshot of an approach with periodic progress evaluation,
with a period of 20ms between evaluations. This period has been carefully cho-
sen, i.e., larger periods resulted in less frequency adjustments but more missed
deadlines due to the reduced ability for the approach to react to variations, par-
ticularly close to the deadline. Smaller periods have resulted in larger overheads
and more frequency adjustments and therefore also missed the deadlines more
frequently. The arrows in Figure 8(a) indicate the times where the evaluation re-
sulted in a clock frequency adjustment, e.g., 10 times in the example shown here.
Further, due to the overheads caused by these frequent – and often unnecessary
– adjustments, the deadline (as indicated in the graph) is ultimately missed by
about 30ms. In contrast, Figure 8(b) shows a snapshot of the same application,
this time with the iterative checkpoint computation. The first checkpoint is after
about 30% of task execution, the second one after 50%, etc., resulting in 5 check-
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points, each of which results in a frequency change. Compared to Figure 8(a),
where 20% of all checkpoints result in frequency changes (50 checkpoints and 10
frequency adjustments), in our approach in Figure 8(b) 100% of all checkpoints
result in frequency changes (5 checkpoints), while still ensuring that the applica-
tion meets its deadline. That is, our approach is efficient in the sense that only
10% of the checkpoints – compared to the periodic approach – were needed, but
each checkpoint resulted in a frequency adjustment.

Overhead Considerations. With our code, each checkpoint computation re-
quires approximately 50μs. In contrast, each frequency switch requires about
150μs, however, the total measured delays can reach up to 20ms. This is due
to the way the used Linux version updates the SDRAM refresh rates for each
frequency change. Figure 9(a) evaluates the achieved run-times of the scientific
visualization application for the following three approaches: (a) no power man-
agement, (b) periodic checkpoints, and (c) iterative checkpoint computation.
The number of lines is varied from 10 to 100, in all cases the application termi-
nates before the deadline if no power management is deployed. If the iterative
approach is used, the actual run-time is about 0–4% earlier than the deadline.
However, if the periodic approach is used, the deadline is missed for most execu-
tions with number of lines of 40 and more. The reason is that the high number
of evaluations and clock changes results in large overheads, which can ultimately
push the execution time beyond the deadline. Figure 9(b) compares the average
clock frequency for the two approaches: iterative checkpoints and periodic eval-
uations. Lower average clock frequency translates to lower energy consumption.
For line numbers from 10 to 70, the iterative approach has lower average clock
frequencies, thereby saving more energy than the periodic approach. After 70,
the periodic approach has lower average clock frequencies, but note that this
led to the missed deadlines in the previous graph. Similar results are shown
by Figure 10(a) that show the energy consumptions as a function of the num-
ber of lines. Here, the periodic approach shows the worst results. The iterative
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Fig. 9. (a) Measured application run-times and (b) average clock frequencies.
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Fig. 10. (a) Energy consumptions and (b) number of frequency adjustments per ap-
plication.

approach shows the best results up to about 70 lines. After that, the execution
times are so large and the potential energy savings so little, that the overheads
caused by our approach result in increased energy consumptions compared to
the case without power management. This indicates the possibility of deploying
a hybrid approach, where frequency scaling is only used if the potential energy
savings outweigh the overheads introduced by the frequency scaling algorithms
(this approach is left as future work). Finally, Figure 10(b) compares the number
of frequency adjustments for the same application for both the periodic and the
iterative approach at different numbers of lines, where the periodic approach
requires on average 3.8 times as many clock adjustments.

5 Related Work

There has been substantial work on power management for mobile devices, in-
cluding low-power modes for disks and networks [4, 6], power-aware schedul-
ing policies [11], and energy management techniques for wireless communica-
tion [2, 12]. Frequency scaling [9] and voltage scaling [10] have been investigated
in recent research. Both have been shown to be useful to reduce power consump-
tion for a variety of application scenarios, including real-time systems [7, 10].
In [15], the authors exploit slack times to integrate fixed priority scheduling
with power-awareness. The exploitation of idle times to preserve power in video
decoding applications has been shown feasible in previous work [8, 13]. The focus
of this work is on overhead reductions for dynamic frequency management for
embedded real-time applications. Previous approaches have introduced methods
to dynamically adjust the clock frequency to allow applications to meet their
deadlines while minimizing the energy consumption [1, 3]. However, frequent ex-
ecution of progress evaluations and frequent frequency changes reduce the utility
of these approaches. This paper extends these approaches by introducing an it-
erative method of computing checkpoints, reducing the number of checkpoints
and frequency changes required.
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6 Conclusions and Future Work

The work presented in this paper builds on previous work on dynamic frequency
and voltage scaling for real-time applications. Here, periodic comparison of ac-
tual task progress with predicted task progress is used to determine if and how
to change the clock frequency. The problem with periodic evaluation of appli-
cation progress is that frequencies may be changed too frequent, resulting in
excessive overheads. The goal of this paper is to replace periodic checkpoints
with iteratively computed checkpoints, resulting in less overheads for progress
evaluation and frequency changes. The results show that in the case of a sci-
entific visualization tool, the overheads can be reduced to 26% of the costs for
the original periodic approach. Our future work will use techniques to evalu-
ate task progress also to detect ‘hot spots’ of long running application code
in terms of energy consumption. For example, the scientific visualization tool
discussed in this paper is typically run for a long period of time and code opti-
mizations of frequently executed segments of the application may help to reduce
the overall energy consumption. Further, this paper considered a single real-time
application for embedded systems, our future work will address situations with
multiple real-time applications executing simultaneously. Finally, other architec-
tures (e.g., Transmeta, XScale) offer different numbers of frequency levels and
voltage levels; our work will explore the achievable overhead reductions on these
architectures.
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Abstract. With an ever-growing number of computers being embedded
into our surroundings, the era of ubiquitous computing is approaching
fast. However, as the number of networked devices increases, so does
system complexity. Contrary to the goal of achieving an “invisible com-
puter”, the required amount of management and human intervention in-
creases more and more, both slowing down the growth rate and limiting
the achievable size of ubiquitous systems.
In this paper we present a novel routing approach that is capable of han-
dling complex networks without any administrative intervention. Based
on a combination of standard overlay routing techniques and source
routes, this approach is capable of efficiently bootstrapping a routable
network. Unlike other approaches that try to combine peer-to-peer ideas
with ad-hoc networks, sensor networks, or ubiquitous systems, our ap-
proach is not based on a routing scheme. This makes the resulting system
flexible and powerful with respect at application support as well as effi-
cient with regard to routing overhead and system complexity.
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2.1 Bootstrapping Phase
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2.2 Routing Phase
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3 Simulation Results
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Abstract. In our information-rich world, managing the data we collect is be-
coming a significant bottleneck for users. This issue has triggered considerable
research in so-called semantic file systems, relying on the attachment of meta-
data to files. Such data is useful for dynamically arranging files in virtual direc-
tories, according to the user’s request or task at hand. However, current research
typically concerns the desktop and little work has been done taking into account
mobile devices, which in addition to being generators of data themselves are now
also capable of carrying significant amounts of information. In this paper we
discuss how context information can be exploited to attach semantics to files re-
siding on portable devices, and we show how such information can be used by
the storage system itself to enhance data management while on the move. We
also describe a storage framework which integrates smoothly with semantic file
systems by facilitating automatic annotation of files generated by portables, as
well as by exploiting this information to better integrate with infrastructure data
stores.

1 Conglomeration of Computing Devices: A New Personal System

Portable, handheld and wearable computing devices are becoming increasingly popular.
Mobile phones, PDAs, digital photograph cameras and GPS receivers are just a few
examples of consumer electronics which can be readily bought at the local electronics
store. The vision of ubiquitous and pervasive computing has also led to the embedding
of processors in objects such as coffee cups [1], clothes [18], jewellery [5] and other
items that could be worn or carried by people. As a result, computing is moving beyond
the physical – and mental – boundaries of the desktop, posing yet another challenge to
system designers, namely that of flexibly combining the available devices to support
personal computing.

Cooperation amongst wearables and between wearables and the infrastructure can
be useful in several cases, be it to overcome usability and capacity limitations, comply
with social norms, or adhere to privacy requirements. For example, one may prefer to
read his personal e-mail on his PDA rather than a public wall-sized display. Conversely,
it could be more convenient to redirect the display from a PDA to the same wall-sized
display when reviewing a map and use the PDA just for navigation control. Given the
variety of circumstances it is unlikely for one specific device to fit all purposes. In
fact, different devices may be candidates for the same task, and the best option may
often be the combination of many different devices rather than a single device. In [17]
the term symbiosis is used to refer to the need for cooperation among handhelds and
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displays, in order to overcome device limitations. A framework which extends inter-
device cooperation to several aspects of application development has been implemented
in [11], exploring the concept of a personal system that can be built in an ad-hoc fashion
by combining various computing elements together.

In this paper we focus on the issue of storage management for the case where the
user employs several portable and wearable devices which can also interact with fixed
infrastructure. We outline opportunities for cooperation on the storage front, taking into
consideration the forthcoming generation of semantic file systems and context-aware
applications. We highlight the problems which must be addressed to achieve this and
then go on to present our storage framework, which was designed with these require-
ments in mind.

2 A Scenario Involving Storage and Wearables

We begin by presenting a scenario that provides a starting point for our discussion on the
possibilities but also the issues of storage management in a multi-device and multi-user
setting.

Jim is a photographer for a major newspaper network. He is visiting Eve, the net-
work’s correspondent in an area suffering from a long-standing regional conflict. On
their first day in the field, Jim prepares to go out. His only concern is to have several
spare batteries for the camera and mobile phone. Eve carries a PDA, and is wearing
her voice-memo recorder necklace and a wristwatch with an embedded GPS receiver.

Inside the conflict zone Jim is constantly alert, both due to sporadic gunfire but also
to spot scenes worth a photograph. Eve leads the way, pointing out important settings
while taking memos for her reportage on her recorder. As Jim takes various photos,
thumbnails of them are opportunistically uploaded to the newspaper office whenever
GPRS coverage is available. The thumbnails are tagged with location information re-
garding the place where they were taken, obtained from Eve’s wristwatch GPS.

At some point, street fighting intensifies and they are forced to take cover in a de-
serted house. Eve takes some time to write a quick report on her PDA, and Jim is review-
ing the pictures on his camera to select the best ones for publication. At the same time,
the chief editor at the newspaper headquarters is browsing the thumbnails received,
looking for candidates for tomorrow’s issue. Selections by both will be uploaded in full
quality to the office, once an Internet connection can be established.

As the fighting settles down, they head back to the streets. On their way to the hotel
the phone catches a strong signal and the selected photographs are uploaded to the
newspaper servers, just in time to meet the press deadline. As soon as they enter the
hotel, all photographs are quickly uploaded via the fast local area wireless network.
Inside his room, Jim is using the HDTV set to review his work.

A sudden nearby explosion causes both colleagues to grab their stuff and run down
to the street. Jim is taking many photographs in a frenzy. As the camera starts running
out of space, old photographs that have been uploaded to the main servers are being
deleted automatically. When things calm down, they head back to the hotel where they
meet Emanuel, another colleague who was also at the explosion scene. As they discuss
the events of the day, Jim shows him the photograph selected for tomorrow’s publica-
tion, which is still on the camera together with the most favourite selections of the day.
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3 Context, Storage and Wearable Devices

A large variety of popular portable devices such as digital cameras, music players and
mobile phones, already provide significant amounts of storage space. As wireless ad-
hoc communication is rapidly becoming the norm, many devices also come with built-in
wireless communication capability, e.g. Bluetooth is already available on most mobile
phones and PDAs. It is thus possible to let devices make their resources – including
storage – available to other devices within communication range. This increases the
potential for using the devices and the data they contain, creating new prospects for
exploitation. In the following we analyse the scenario of Section 2, which introduces
several such possibilities, partly in an implicit way. We then outline the technical re-
quirements of a storage management framework designed to exploit this potential.

3.1 Wearable Storage Management and Context Exploitation

The explosion of the data being created and handled, even by casual users, has magni-
fied the importance of semantic information. Attaching meta-data to files is therefore
expected to play a central role in the management of storage [6, 7, 20, 22]. On desk-
tops, this information is typically used to provide flexible views of the contents of huge
collections [20].

Such information can be harvested to a large extent from sensors, worn by people
or part of the infrastructure, in order to relieve the user from the tedious operation of
manually annotating files. One such example is the case with the location-stamp of files,
which can be obtained from a GPS receiver, just as time-stamps are a standard part of
conventional file systems. It is important to note that wearable devices are especially
suited for automatically producing meta-information as they are in close contextual
proximity to the user who generates or captures data.

Semantic information can also be harvested from user input that is being provided
while working towards a high-level goal rather than explicitly just for the sake of en-
tering meta-data. This is the case in our scenario when Jim and the newspaper’s editor
mark the best photographs, asynchronously and without any explicit communication.
Nevertheless, through this selection they implicitly introduce various levels of signifi-
cance: photos chosen by both, photos chosen by one of the two and photos chosen by
neither.

The storage framework can exploit the generated meta-data to adjust it behaviour.
Specifically, photographs of no significance are uploaded as thumbnails, whereas sig-
nificant ones are uploaded to the backend server in full quality and with higher prece-
dence. Photographs that have been backed up can be deleted, with the less significant
ones being eagerly deleted from the local store and the most significant photographs
being preserved the longest possible.

As wearables can be constantly carried by the people, opportunity for their use may
arise at any moment. With conventional file management tools for uploading, mov-
ing, copying and deleting files, the user may be required to deal with such issues un-
expectedly and continuously. Such interaction may also be extremely awkward if not
impossible to perform using simple wearable interfaces. As a result, user attention is
forcibly shifted from one’s real work to the resolution of technical issues. In the last
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scene of our scenario, if Jim were required to manually delete photographs, in a hurry,
this may well have translated to missed opportunities and perhaps incorrect decisions
on his part. This is in contrast with the vision of ubiquitous computing where sys-
tems provide a distraction-free environment and the user is not bothered with technical
and/or untimely decision-making. We believe that our approach of combining context
with storage management support is a good step towards eliminating such problems and
achieve a collective device behaviour that is in accordance to the ubiquitous computing
advocacy.

3.2 Overview of Technical Issues

The first requirement from a technical standpoint is the management of meta-informa-
tion. A light-weight semantic information store must be present on the portable device.
To exploit this semantic store, the system needs to provide facilities for associating
meta-information with the files generated on the portable. The mechanism employed
must allow any meta-data generating device or application to transparently ‘hook into’
the file generation process and add its piece of meta-information to the file’s annota-
tions.

While our focus is on wearables one can not ignore the possibility of exploiting
infrastructure on the move. For instance, we assume that an always-on backend storage
server is available. This could be a common personal computer, or a special household
appliance in the user’s home. Alternatively, it could be provided as a network backbone
service from a service provider or organisation. Mobile phones or hot-spots may also
be exploited in order to reach the server while on the move.

The system must be flexible enough so as to allow collaboration among wearables
which belong to the same as well as different users, in order to extract meta-information.
Specifically, the storage on wearables sensing prolonged co-presence among users
should cooperate to produce additional meta-information for files produced by their
owners. An example of such cooperation is the tagging of photographs with location
information throughout the day.

Naturally all the technical challenges present in ad-hoc distributed systems apply.
Service discovery must be performed for the detection of other devices and interopera-
ble communication protocols must be employed to support the multitude of computing
platforms. Last but not least, all this functionality must be implemented with the limited
resources of wearable and portable devices in mind.

4 Implementation

4.1 Model

Our system is built around a global hierarchical namespace used to identify users, de-
vices and files. Each user has a node representing him in the namespace. For example:
com.newsagency.employees.jim. When users add devices to the system, each device is
identified by a subordinate name: com.newsagency.employees.jim.devices.DeviceID.As
a result, files on the storage embedded in a device go by fully-qualified names of the
form: com.newsagency.employees.jim.devices.DevID..store.filename. In addition to the
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local store of each device, the system requires that users have a central data reposi-
tory where all their data is collected. This is identified by the name com.newsagency.-
employees.jim.infrastrure.MainStore.

We have also defined three scopes of the storage universe (Figure 1): the Reposi-
tory, the Neighbourhood Store and the Local Store. These scopes have clean and strong
associations among them and have been conceived to simplify the user’s mental model
for the behaviour of the storage system:

– The Repository is the backbone storage server which contains all data ever created
by the user. It is the place where all data eventually end up, regardless of the location
and the device of creation. The Repository is expected to be permanently available
and accessible via the Internet.

– The term Neighbourhood Store refers to the collective local storage of a group of
devices within range of each other. The user (and application developer) perceives
this as a single entity where files can be stored and retrieved from1.

– The term Local Store refers to the storage of a single device.

As a last note regarding the design of our storage model, we decided to employ
the approach of immutable files. This simplifies implementation and eliminates various
sycnhronisation issues that are hard to solve in loosely coupled distributed systems. It
is also in accordance with recent trends towards deep archival systems[13, 16, 19].

4.2 Core Services

Before focusing on the storage system, we briefly mention some base services pro-
vided by our middleware, whose layout is depicted in Figure 2. Particularly, we note
that the issues of nearby device discovery, capability introspection and point-to-point
communication among devices, are taken care of by the core system services. The cor-
responding APIs hide the actual type of wireless communication technology in use. We
further point out that the active modules in our design are only the discovery and stor-
age services, shown with dotted frames in Figure 2. Thus, apart from the application(s)
running on the device, there are only two threads of control.

1 This aspect of the storage system is outside the scope of this paper and is orthogonal to the
ideas and system architecture described here. We simply mention it for completeness.
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4.3 Context Manager and Discovery

A core system module is the context manager, a data space whose contents at any given
instant constitute the active context as observed by the device. The data is maintained
in the form of a tuple space where each entry has four fields: key, value, scope and
time-to-live (TTL). This data is generated by applications hosted on the device as well
as from any of the core system modules.

An indicative sample of possible context manager contents is shown in Table 1. The
key and value are open unrestricted sets. Applications are free to introduce keys under
any name and interpret their values as they see fit. Examples of how the system itself
uses its own keys are given later in this section and in Section 4.4. We first discuss the
meaning of the scope and TTL fields.

A time-to-live (TTL) value must be defined for each entry by its submiter. This
value specifies how long the entry should persist in the local context manager. When
the TTL expires, the entry is automatically removed. We point out that since keys –
as will be shortly discussed – may propagate to other devices, they are passed on with
updated TTL values. This does not require devices to share absolute time and performs
well even with relatively significant clock drifts. In practice, clock synchronization has
proven to be a non-issue.

The scope field controls whether key propagation occurs in the first place. The sub-
mitter of the entry must choose one of the following values:

– Local: No propagation at all.
– Owner: Propagation to ‘persistently nearby’ devices of the same owner.
– Neighbours: Propagation to ‘persistently nearby’ devices, disregarding owner.

The term ‘persistently nearby’ implies that devices are near each other for a while,
as opposed to a short encounter. For example, when a person enters his office briefly
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a device he carries may detect other devices he owns in the office. Context exchange
among these would not occur at all, as no entries may be exchanged. But if that person
takes with her an extra device from the office, then owner entries would eventually be
exchanged among this device and the one already carried by the user. The neighbours
scope restricts context exchange in the case where two people meet in a corridor as
opposed to the case where these two people are walking to the building’s cafeteria. It
should be noted that context exchange always requires some long-lasting co-presence
among the participating devices. This prevents a device’s perception of context from
being influenced by the ‘noise’ of opportunistic encounters.

The context manager provides a mechanism for system components, including ap-
plications, to capture and share context information across different layers (and even
systems when exchange occurs). For example the discovery subsystem tries to maintain
co-location information with other wearables. When the discovery service detects that
another wearable has been in close proximity for a while2, it will locally advertise this
fact by posting a neighbour entry with private scope to the context manager. This con-
text information is used in various ways by the system itself and is further available to
applications for their own purposes. For example, as would be expected, context man-
agers use this key to decide whether to exchange information with each other, as only
devices which have been declared ‘neighbours’ are considered for exchanging entries.

The context exchange is tightly coupled with the device discovery and introspec-
tion cycle. At the end of each cycle the discovery service calls into a method of the
context manager which implements the exchange. This approach eliminates the need
for an extra control thread for this task, plus allows for a more efficient implementation
of the communication, e.g. reusing an already open connection between devices. The
only side-effect is that there is no context manager thread to update the TTL values
and remove expired entries. For this reason TTL fields are updated (and stale entries
removed) on-the-fly, during context retrieval calls. In addition, to avoid uncontrolled
context dissemination, the scope of imported entries, received from remote devices, is
converted to private and is thus not forwarded to other devices.

4.4 Storage Functionality

Using the storage system, applications may create immutable files on the wearable.
Each file may also be associated with a so-called summary. For photographs this could
be a thumbnail, for voice memos an excerpt or a speech-to-text conversion, for songs
the chorus, etc. Applications may optionally do this during initial file creation, or a
later time. Moreover, files may be annotated with semantic information by attaching
key-value pairs to them. This is the traditional approach used in semantic file systems
[6, 7], though RDF-based annotations have recently been suggested [22]. Our system
attempts to automatically annotate files by attaching the active context3 as observed by
the context manager.

2 The definition of long-lasting co-presence is given through a user-configurable time threshold,
which can be set separately for different devices depending on type and ownership.

3 Only the key and value fields are stored in the semantics database file – the scope and TTL
fields of the context manager are ignored.
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Table 1. Sample context manager contents.

Key Value Scope TTL
neighbour DevicexID private 12min
neighbour DeviceyID private 15min
gpsstamp XdY m(N/S), KdLm(E/W ) neighbors 2min

The meta-information attached to a file is not necessarily a snapshot of the cur-
rent context-manager contents. An application may intervene and flexibly control the
annotation, introducing additional keys, altering the values of existing ones, or even
removing some of the keys being attached to the files. In terms of programming, this
is achieved by letting applications install handlers via the storage API. For example, a
handler which prevents files from being annotated with the devices which were neigh-
bours at the time is shown in Listing 1. As would be expected, applications can also
inspect and alter file annotations at any time after the files have been created, using
appropriate storage API methods.

In an analogous fashion, the storage system attaches and exploits annotations to files
for its own purposes, by the keys shown in Table 2. The dirty key indicates the status of
each file regarding its backup progress in the Repository. The storage service automat-
ically transfers files to the Repository when connectivity is available and updates this
key accordingly. The order of upload is determined by using the rating key, which is
also added to files created by the storage system with an initial value of zero. Files with
higher rating have precedence over other files when the storage system uploads contents
to backend storage. For files of equal rating the order of creation is used. In accordance
to our open storage management scheme, applications may alter the rating as they see
fit, for example the camera device application does so when the user marks a photo-
graph as significant. An indicative file annotation life-cycle using context information
is depicted in Figure 3.

The storage system keys are further used to automatically create free space when
a device runs out of space, by automatically deleting the oldest files with the lowest
significance that have already been uploaded to the Repository. This can be done based
on the dirty, rating and timestamp metadata entries. This procedure is executed, in a
blocking mode, within API calls that request storage space. A call fails only when all
files on the device are dirty and there is not enough free space. In order to avoid blocking

p u b l i c void a n n o t a t i o n H a n d l e r ( C o n t e x t S n a p s h o t t o A t t a c h ) {
I t e r a t o r i t = t o A t t a c h . i t e r a t o r ( ) ;
w h i l e ( i t . hasNext ( ) ) {

/ / i t e r a t e t h r o u g h t h e ” t o be a t t a c h e d ” a n n o t a t i o n s
C o n t e x t P a i r cp = ( C o n t e x t P a i r ) i t . n e x t ( ) ;
i f ( i t . getKey ( ) . e q u a l s ( D i s c o v e r y . NEIGHBOUR KEY ) )

i t . remove ( ) ; / / remove ” n e i g h b o u r ” k e y s
}

}
Listing 1.1. A sample file annotation handler.
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Table 2. Storage-system annotations.

Key Value Range Interpretation
dirty Yes/Summary/No. Indicates whether a file has

been fully backed up, or has
only had its summary uploaded,
or has never been uploaded to
the backend storage server.

rating Integer value. Indicate the significance of a
file.
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Fig. 3. File annotation process.

of applications, it is possible to set values for (a) the minimum free space (MFS) and
(b) desired free space (DFS). In this case the storage system asynchronously initiates
a corresponding garbage collection/backup algorithm each time the MFS threshold is
passed. The asynchronous garbage collection stops when the DFS value is reached (or
no more space can be recovered). Applications may further request a call-back from the
storage service when the cleanup algorithm cannot free space, for example in order to
warn the user to manually delete files.



Context-Based Storage Management for Wearable and Portable Devices 245

4.5 Base System and Middleware Runtime

Our storage framework is implemented as part of a middleware system for cooperating
wearable devices. This implementation is the evolution of our previous work on co-
operating wearable devices [11]. The new version is implemented in the Java language
and comprises of the elements marked as ‘wearable middleware’ in Figure 2. The entire
runtime components and application API make for a self-contained system which is not
dependent on the standard Java classes. Such an approach would add significantly to the
footprint of the system, also providing functionality that is not needed4. The footprint
of the wearable middleware layer is less than 1MB, to which a base runtime of a VM
and a native interfacing layer to devices must be added.

A flexible configuration for a base system (Figure 2) is the use of the Sable [4] vir-
tual machine and the Linux kernel. Although not a particularly lightweight approach5,
it is sufficiently small for the purposes of experimentation, provides a comfortable de-
velopment/testing environment and can be installed on several PDAs and ARM-based
devices (e.g. our ‘data-wallet’ described in [11]), while also leaving ample room for
applications.

5 Related Work

An accumulating body of research advocates the transition towards file systems based
on semantic information [6, 7, 15, 22], with [7] giving a most comprehensive compari-
son. However, to our knowledge all previous research focuses on the desktop and does
not consider wearables; they are disregarded both as a significant storage medium or
as a source for meta-information. In fact, the process of generating meta-information is
often overlooked or relies upon explicit user input. As content-based access becomes
popular, the importance of automatically extracting meta-information will increase to
the point of becoming a prevalent issue. This issue was immediately identified as even
in early research [6] on semantic file systems, an approach to tackle the probelm was
suggested: the use of transducers6. Other methods for extracting such information were
recently described in [20], with a focus on desktop-oriented activities. In some ways,
our work extends this approach to consider wearables.

The issue of storage in ubiquitous computing environments is discussed in [8], but
in a complementary manner since focus is mainly on the surrounding infrastructure
and backend servers. Personal data is made available through data-references carried
by the user, which allows backend-servers holding the files to supply their content as
users enter and leave the smart space. Applications may attach context information to
files using the typical key-value pair approach in semantic file systems [6] and to browse
virtual directory hierarchies using queries on the attached meta-data [7, 22]. The novelty
is that the smart space has a special virtual ’current’ directory which contains the files
whose semantics match the smart space’s context. In this manner the system filters
and channels the data to pertinent to the current context to applications in the room.
Interestingly, by moving a file into the special ‘current’ directory, the user may attach
the current context as observed by the smart space to the file.

4 For resource-rich portables (e.g. PDAs) one may include a standard Java installation.
5 Kernel (600kb), POSIX libraries (1900kb) and VM (400kb) on ARM architecture.
6 Specialised drivers for extracting semantic information by interpreting contents.
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Wearable devices can assist in collaboration among people. The potential of ‘wear-
able communities’ – social networks of collaboration built around mobile devices – is
described in [10]. The Proem framework [9] facilitates the development of such ap-
plications through a development kit for implementing ‘peerlets’, collaborative peer-
to-peer applications for ad-hoc networks. We append to this work the possibility of
collaboration revolving around a central mechanism that integrates context and data
management. Furthermore, our implementation is based on a framework which aggre-
gates several wearable devices owned by one user into a single platform, rather than
taking the approach of each device being an application platform.

The use of a wearable device as a first-class citizen concerning storage is taken to
the extreme in the case of the Personal Server [21]. The author suggests that it will
be feasible to hold all of a user’s data on a handheld device, which will be constantly
carried around and accessed via the infrastructure. While this approach seems to be in
contrast to our view of multiple cooperating personal devices, the distinction is artificial
since a Personal Server fits nicely into our framework taking the role of a general-
purpose storage device for all wearables present. In fact, we have developed a wearable
data-wallet [11] along this exact concept, viewed through our prism of a multi-device
wearable system, also supporting the integrated management of multiple such storage
devices.

Our implementation is in part inspired by recent work in vertically shared informa-
tion across adaptive network protocol layers. This principle is introduced in [2], termed
as situation-aware communication, giving birth to a trend of designs with controlled
cross-cutting of network layers [3]. The idea is to store the communication context of
a node in a central module that is accessible by all protocol layers and applications for
adaptive decision making. We follow a similar principle, by using the context manager
as a shared context space across all system layers to keep context generation and con-
sumption open and flexible. In addition, context managers of different devices commu-
nicate with each other by exchanging (certain) information. This has similarities with
work on mobile tuple space based communication [14], in fact the collective context
of neighbour devices can be thought of as a distributed tuple space that is gradually
assembled by each participant as a function of co-presence.

6 Discussion

Our framework’s ultimate goal is to explore functionality emerging as a side-effect of
people’s high-level activities rather than as a consequence of conscious and rigid pro-
gramming. Contrary to the usual hard properties of a computer, this often concerns soft
properties that are likely, but not guaranteed, to be achieved. We believe that investi-
gating such functions will become increasingly important as we strive towards a new
mental model for the ubiquitous computing era.

Our storage framework uses context information to semantically annotate files
transparently using the context manager. As a result, the meta-data which may be added
to files is inherently extensible. Annotations of any type may originate from any other
device with no requirements on the part of application developers to anticipate, pre-
program or negotiate meta-data collection. For example, the minimal ‘application part’
of a digital camera or a voice recorder need only consist of code that performs data
capture and storage.
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The possible annotations to the data being generated are limitless and depend on
previous but also future ideas for other wearable devices and applications which may
provide context. While the developer may foresee some meta-data and possible usage
in conjunction with specific applications, it is likely that many other options cannot be a
priori conceived in order to be built into the system at design time. An open and flexible
approach is therefore mandatory, which is one of the key properties of our system.

The exploitation of meta-information has practically no limits, and is open to imag-
ination. However, as with the case of the semantic web, standardisation of annotations
through ontologies [12] is required to achieve portability and wide usage of annotation-
aware subsystems and applications. The approach must be simple, general and exten-
sible. Even though in our implementation we have introduced only a very small set of
predefined entries, this has created the potential to support several different aspects of
functionality, some of which were actually identified after the core system had been
implemented.
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Abstract. In Ubiquitous computing small embedded sensor and computing 
nodes are one of the main enabling technologies. System programming for such 
small embedded systems is a challenging task involving various hardware com-
ponents with different characteristics. This paper presents a file system for sen-
sor nodes platforms providing a common organization structure and a light-
weight and uniform access model for sensors and all other resources on sensor 
nodes. This mechanism forms an abstraction from different hardware, makes 
functions re-useable and simplifies the development on such systems. With Par-
ticleFS an file system implementation on a sensor node platform is shown. As 
an example a telnet application running on sensor nodes was implemented 
demonstrating the usage of the approach for system programming on such plat-
forms. 

1   Introduction 

In Ubiquitous computing (Ubicomp) and Pervasive Computing environments people 
are surrounded by a multitude of different computing devices. Typical representatives 
are PDAs, PCs and - more and more - embedded sensor nodes. Platforms are able to 
communicate, preferably wireless, and exchange information with each other. By 
collecting and interpreting information from sensors and network such devices can 
improve the functionality of existing applications or even provide new functionality 
to the user. For example, by interpreting incoming information as a hint to the current 
situation, applications are able to adapt to the user requirements and to support him in 
various tasks. Prominent examples where such technology is developed and tested are  
AwareHome[10] and Home Media Space[13]. 

An important area within Ubicomp is the embedding of sensor nodes in mundane 
everyday objects and environments. Such applications were explored for instance in a 
restaurant context at PLAY Research[12]. Within the scenario sensor enhanced ob-
jects supported dynamic workflows, information displays, and new interactions. Im-
plemented applications checked for freshness of food or automatic negotiation of 
prices between menus depending on their history. The central enabling technologies 
for this application are small sensor nodes that are embedded into various objects in 
the restaurant. Devices used in this restaurant setting were Smart-Its[1], but similar 
devices exist including Berkeley Motes[9], Ember[6] and MITes[15]. In general, 



250      Christian Decker, Michael Beigl, and Albert Krohn 

these devices integrate computing capabilities – primarily an 8bit microcontroller – a 
wireless communication protocol – often customized – and various sensors. Most of 
the device platforms follow a modular concept where additional sensors can be added 
according to the needs of the application. The devices are battery powered and use 
energy saving mechanisms to last for months or even years. In particular for integra-
tion aspects they are very small. Figure 1 shows a 1 cubic centimeter (cm³) device 
with a microcontroller, communication interface, sensors and battery. 

 

Fig. 1. TecO’s Particle[16] (1 cm³ integrating microcontroller, sensors, communication, bat-
tery). 

System programmers of such embedded and integrated devices have to be aware 
of many constraints. The microcontroller is often a resource restricted 8-bit type, 
providing typically between a few kilobytes (KB) up to 512KB of Flash memory for 
storing programs and also small amount of RAM. Application programs are primarily 
written in assembly language or C. As a consequence of the embedding in everyday 
objects, applications heavily access the sensors as primary information source. Most 
systems provide developer support in one of two ways: An operating system protects 
access to resources by shielding lower level functions from direct access through the 
application. Communication between applications and system is made through 
events, such as in the TinyOS[9] used by the Motes. The other possibility is a library 
shielding the access to (sensor) hardware by providing abstract function interfaces. 
This concept avoids the overhead of event dispatching. Common to both methods is 
that they are not able to completely shield and protect the application due to restric-
tions of the used microprocessor platforms.  

The approach we chose to follow in this paper, when designing the system soft-
ware, places the developer at the center of interest. Our goal is to maximize the sup-
port for the system programmer, who is implementing applications for Ubicomp 
settings. We believe that a compact, simple-to-understand and simple-to-remember 
programming interface contributes most to the support for such a programmer. This 
assumption is supported by experiences that we gathered in various Ubicomp devel-
opment projects presented in the next section. These experiences are motivated by 
examples in the next section. Based on these findings we present our system approach 
in section 3. In the center of this architecture stands the concept of a file system. All 
resources of the system are accessible only through the file system via a uniform 
access method, formed by six primary operations of the file system. We believe that 
this method of access is most appropriate for the programmers of small, embedded, 
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wireless devices, as it provides a lightweight and compact interface to system func-
tionality. We will show that such a compact file system architecture is also appropri-
ate in terms of low resource consumption. 

2   Analysis: Ubicomp Development 

We implemented various applications on the wireless networked embedded sensor 
platform Smart-Its Particles[16]. Many of these applications are clustered in larger 
settings. An example is the Aware Office[2] – an office environment running differ-
ent applications distributed over several dozen of wireless embedded sensor and 
computing nodes. Most of these nodes are embedded into everyday objects such as 
chairs, tables, windows, pens and whiteboards. The available applications support 
different activities in office settings including meeting support, activity and occupa-
tion detection. When implementing such applications programmers can choose from a 
variety of different sensors on the Smart-Its Particle hardware. It is known that the 
use of multiple sensor sources tend to improve the quality of the output. Nevertheless 
we experienced that in practice programmers use mostly one sensor as input to the 
system. They also tend to use the sensor they have used in a project before if applica-
ble or a sensor where they can re-use example programs. Being asked for the reason 
they answered that from their experience their unfamiliarity with (the access func-
tions of) other sensors would delay the development process. 

Other experiences with a library based access interfaces to resources come from 
the eSeal[5] project. In this project sensor devices are embedded in physical goods 
measuring environmental and logical conditions in which the goods are situated. The 
nodes acquired, interpreted and shared sensor data among each other in order to de-
tect violations pre-defined limits. This compelled the programmer to use several dif-
ferent sensors. Sensors are accompanied by various options to enable and disable 
them in order to save energy. In the analysis we found that the system programmers 
always used the simplest but most energy consuming way to power sensors on and 
off. Although this results in higher energy consumption programmers explained that 
the complexity of various interfaces but also of the overall distributed application is 
too high, so they decided to lower complexity on other parts of the program as much 
as possible. Another finding in this context was interface breach. Each sensor is ac-
cessible through its own interface taking the sensor’s features into account. This inter-
face is often only slightly different from another sensor’s own. Nevertheless, even 
though the difference is only small, development got often stuck in debugging be-
cause of not noting the differences in the interface when accessing the sensor. 

From the findings in the conducted experimental analysis we conclude that sup-
porting the programmer to follow the simplest and uniform way to access sensors 
should be major principles for system programming. These principles also apply to 
other resources like communication and memory of the sensor nodes. Such an ap-
proach allows programmers freedom to concentrate more on other important aspects 
like distributed programming logic. 

We propose a file system as an appropriate abstraction for implementing these 
principles. The coherent, hierarchical name space is able present resources in general. 
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Therewith, it creates a clear and simple-to-recognize structure of all resources. The 
file system operations are applicable to all files and form an uniform access model on 
the structure. This enables the system programmer to follow the simplest way in the 
development process. Finally, we believe, that the familiarity and long-term experi-
ence of system programmers with established file systems will help to standardize 
programming on the various present and upcoming sensor node platforms. 

The paper continues with the system architecture of a sensor node incorporating a 
file system. The understanding is deepened in an analysis of the resources of a sensor 
node. As a result a suitable name space and operations of a file system are derived. In 
section 4 we present our implementation of ParticleFS and discuss its performance. 
With the telnet application utilizing the ParticleFS in section 5, it is demonstrated 
how a file system supports the system programmer. Section 6 discusses related work 
on file systems before the paper is concluded in section 7. 

3   System Architecture 

The file system provides a uniform access layer for an application on top of all re-
sources available on sensor nodes (figure 2). An application has access to direct and 
mediated resources via the file system. Direct resources are the representation of 
available hardware on the sensor node. Mediated resources aggregate and interpret 
information from direct resources, but can also represent other functionality provided 
by an application. If mediated resources access direct resources, this is also carried 
out via the file system. 
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Fig. 2. System Architecture of a Sensor Node integrating a File System. 
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The file system is composed of a name space presenting all resources in a hierar-
chical structure, file operations responsible for the uniform access to the resources 
and a type system supporting compatible operations on multiple resources. It is im-
portant to note, that the application has no direct access to the hardware. All calls are 
made through the file system. In the next subsections the components of the architec-
ture will be explained in detail. 

3.1   Resources 

The above-mentioned sensor nodes (Motes, Ember, MITes and Particles) have a mi-
croprocessor unit (MPU) at their core and incorporate various sensor, wireless com-
munication, memory and actuation hardware. They are typically powered by regular 
batteries. We will analyze available resources and their methods of access on these 
sensor nodes and thereby distinguish between direct and mediated resources. 

Direct Resources 
Direct resources are represented by hardware components available on the sensor 
node device. The sensor nodes have access on 

• various sensor hardware, e.g. light, audio, acceleration, temperature sensors, 
• wireless communication interface 
• memory in form of internal, i.e. contained in the MPU, and external memory 
• power supply, typically regular batteries 
• actuators, e.g. LEDs, buzzer or small display 

Sensors. Sensor hardware is accessed with a multitude of possibilities. Analog sen-
sors are sampled via the MPU’s analog-digital converter. Digital sensors provide for 
instance a duty cycle, which needs to be sampled and interpreted, or they provide a 
bus interface. Typical interfaces used on sensor nodes are I2C and 1-Wire bus. 

Communication. A widely used access method to the wireless communication inter-
face is a serial line communication connected to communication component. The 
communication component with the transceiver is then responsible for the channel 
access, data modulation and the communication protocol. On other platforms like 
Smart-Its Particles the transceiver is completely controlled by the MPU, including 
methods for channel access, data modulation and an own communication protocol. 

Memory. The MPU's internal memory consists of Flash-ROM for programs and 
RAM for program variables. The Harvard architecture common for MPUs on the 
considered platforms imposes the separation of both types. A system programmer has 
only limited control over the internal memory because the compiler determines the 
usage. This makes the internal memory inappropriate to be accessed via a file system. 
External memory is included in form of flash memory or EEPROM devices. Storage 
for arbitrary data is provided ranging from a few kilobytes up to half a megabyte. 
External memory components provide typically a serial interface like I2C or SPI 
interface. 
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Power Supply. Energy is one of the key resources for sensor node platforms. Batter-
ies are a crucial component and often limit the usage of the platform. Having access 
to this resource enables the application to optimize its runtime behavior. Motes and 
Smart-Its Particles are both able to measure the voltage of the supplying battery.  

Actuators. Embedded sensor nodes have capabilities to present states and events. 
Commonly used on all mentioned sensor node platforms are LEDs. Current Motes 
and Smart-Its Particles integrate a buzzer for acoustic notifications. Complex actua-
tors are displays, controlled via serial line, I2C or by a proprietary protocol. However, 
displays are seldom used, because they require a lot of energy and often the embed-
ding in everyday objects prohibits their usage. 

Mediated Resources 
These resources apply operations like combination, aggregation an interpretation on 
data from direct resources. An example for a mediated resource is the average volume 
level of a sound source. It requires the aggregation of an array of audio samples from 
the direct resource microphone, which are then used to compute the average volume 
level. Mediated resources may access a multitude of other direct and also mediated 
resources. The concept of mediated resources can even be applied to functions within 
an application. A system programmer can separate functions from the application and 
present them in the file system. In this way even pure computational functions can be 
presented as mediated resources. In order to serve as a uniform access layer to direct 
and mediated resources a file system has to organize them in an appropriate name 
space. In order to retrieve information from these resources a file system needs a 
suitable and applicable set of operations for accessing these resources. 

3.2   Name Space 

In the file system resources are organized in a hierarchical name space. Files are the 
smallest entities and directly identify resources. Files are further organized in directo-
ries which are special files identifying a collection of files. By recursion a file tree can 
be built up with a single top directory representing the root. A resource in this tree is 
then clearly identified by the complete path starting from the root down to the single 
file along the tree structure. In order to separate the directories from each other along 
this path the delimiter “/” is used. A single “/” indicates the root directory. There are 3 
predefined directories in the root directory. The directory /dev/ holds all direct re-
sources. In /context/ the system organizes mediated resources based directly or indi-
rectly on sensors. Finally, resources for storing application data are located in /usr/. 
Within these directories the resources may further hierarchically ordered using subdi-
rectories. Arbitrary data is physically stored in the external memory which is repre-
sented as the direct resource /dev/eMem. In order to include those data in a structured 
manner, the /usr/ directory contains a file system view of the /dev/eMem resource. 
This is considered as a mediated resource and therefore files in /usr/ are also mediated 
resources.  
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Table 1. Example of a Name Space of Resources presented as File System. 

Resource Explanation 
/ This identifies the root directory. 
/dev/ Directory containing files providing access to direct resources. 
/dev/SLI0 File representing a light sensor. SLI1 is the second one, if available. 
/dev/SAU This is the file for retrieving for sampled the microphone. 
/dev/SVC This is the file for retrieving the battery voltage. 
/dev/eMem The external memory is accessed for reading and writing via this 

file. 
/dev/comm. This file provides access to the communication interface. 
/context/ This directory contains files for accessing mediated resources 
/context/audiovolume This file is for computing the audio volume 
/context/batterystatus Mediated resource describing battery in 3 states (full, good, weak) 
/usr/ Application stores arbitrary data as regular files in this directory. 
/usr/myfile File containing arbitrary application data; created by an application  

In table 1 we present an example of a name space. For sensor hardware in the /dev/ 
directory we used a three-letter-abbreviation indicating a sensor. We found it more 
expressive than the technical name of the sensor and reusable on different platforms. 
For instance, SLI indicates a Sensor for LIght. If there is more than one sensor of a 
type available, the sensors may be enumerated by an additional number behind the 
identifier. 

3.3   File-Based Operations 

After the analysis of available resources and organizing them in a name space, a suit-
able set of operations is needed in order to access them. A communication interface is 
accessed by the widely-used operations send() and receive(). Similar to that, widely-
used access methods for memory are read() and write(). Both approaches abstract 
from detailed processes going on below, e.g. a specific organization of the memory, 
or channel access of the communication interface. This enables a shielding of hard-
ware differences on different platforms. Taking those considerations into account we 
analyzed the usage of read() and write() for other resources. Both are generically 
understood for transferring data in both directions which makes them suitable for 
accessing various resources. We identified them as fundamental for the access model. 
However, their implementation is different depending on the platform and the re-
sources. As a consequence we demand that each resource is coupled to its specific 
read() and write() operations. Hereby, the file system only references these specific 
operations. Their implementation remains in a specific access library for a resource. 
In that way an abstraction is achieved, since the generic read() and write() are called, 
but the specific access behavior on a resource is kept by transparently calling the 
specific read() and write() through the file system. Additionally, every resource pre-
sented as a file is coupled with a type as a file attribute. Types can be used to check 
for compatibility when accessing different resources in combination. This is impor-
tant for mediated resources since they may be derived from other resources. The type 
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system will be explained in more detail in the next section. The access model sup-
ports types in the process of mounting and by providing type queries. The set of op-
erations is summarized in table 2. It bases on our long-term practical experience with 
the Smart-Its Particle platform and insights of similar platforms. We use the C syntax 
for the operation set. Note, size_t is an abstract data type which can be replaced with 
an appropriate platform specific one. 

Table 2. Generic Access Functions of the File System. 

Operation Explanation 
size_t read 
  (int fd, void* buf, size_t n) 

Reads n data bytes from the resource identified by fd to 
buf; returns number of bytes or -1 if error occurred 

size_t write 
  (int fd, void* buf, size_t n) 

writes n data bytes from buf to the resource fd; returns 
number of bytes or -1 if an error occurred 

int open(char* resource_path) Returns a descriptor for the resource; -1 if it is not valid. 
int getType(int fd) Returns the type of a resource fd; -1 if fd is not valid. 
int mount 
  (char* resource_path, int type, 
    (*pFunc) read, (*pFunc) write) 

Creates a resource in the name space. Type and function 
pointers to their specific read and write operations are 
given. -1 is returned if the resource_path already exists. 

int umount(char* resource_path) Removes a resource; -1 is returned if it is not valid. 

Our access model is now based on read() and write() operations which are coupled 
to specific resources and a type system supporting compatible operations across dif-
ferent resources. Both read() and write() operations are also fundamental in 
POSIX[17]. POSIX, the portable operating interface, defines data types, return codes, 
functions for file operations, process handling, security issues and error reporting. 
The definitions describe an interface which is designed in a way making them easily 
portable to other systems. Both operations apply to all functions (e.g. processes, file 
operations etc.) within the standard. Indeed, it was intended to use the POSIX syntax 
for read() and write() operations. From the POSIX point of view, we achieved a very 
lightweight file access model by leaving out access permissions, security issues and 
process handling. Return codes where simplified and there is no detailed error report-
ing mechanism like errno() in POSIX.  

3.4   Type System 

The type of a resource allows to check for compatible resources, when using them 
together. For example: The communication interface may not accept raw sensor val-
ues from the /dev/ resources. They should be extended by meta information. This is 
done by reading them not directly from /dev/, but from a mediated resource in 
/context/. By checking the type of the resource the communication interface 
/dev/comm can decide whether to accept or not accept the resource. Furthermore, 
higher-level functions aggregating data from low-level resources can adapt their be-
havior according to the types. The designed file system knows the following types: 
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Table 3. Types used within the File System. 

Type Explanation 
directory indicating directories, such as /dev/ or /usr/. 
regular file each file containing arbitrary data in /usr/ is considered to be a regular file. 
custom types these types are defined by a system programmer for all other resources, e.g. 

each file identifying a direct resource in /dev/ has its own type. 

While the directory type and the regular file type are integrated in the system, cus-
tom types can be defined freely. It enables the system programmer to define the com-
patibilities between resources. However, the system programmer has to take care of 
declaring resources with consistent types. For instance, using resources together 
which work on different data formats, but are accidentally declared with the same 
type may result in unexpected behavior of an involved resource. The system does not 
provide checks for such inconsistencies. 

4   Implementation 

We implemented the previously suggested design in a file system called ParticleFS 
for our Smart-Its Particle platform. The devices comprise a communication board 
with a PIC18f6720 microcontroller. The communication uses a TR1001 transceiver 
with the customized protocol AwareCon[3] especially designed for ad-hoc network-
ing in Ubicomp environments. Furthermore the board carries a 512KB flash memory 
component. Various forms of sensor and other add-on boards can be attached to the 
communication board. The following sensors are currently implemented on the sen-
sor board: two 2D-accelerometers enabling the measurement in three dimensions, a 
light sensor, a microphone, a force sensor and a temperature sensor. The boards are 
powered by a single AAA battery. The implementation was carried out with the goal 
to limit the resource consumption of the file system. Internal memory usage regarding 
RAM and ROM on the microcontroller was aimed to be kept minimal. Furthermore, 
the file system’s effects on the overall runtime behavior were analyzed in order to 
estimate consequences for calls on hardware operations, e.g. sensor sampling via the 
file system. 

4.1   ParticleFS 

ParticleFS implements a main table, a subdirectory table and a file storage table (fig-
ure 3). The main table holds all resources including directories, the type of the re-
source and the function pointers to the resource specific read() and write() operations. 
Each entry is preceded with a number – the resource descriptor. Additionally, the 
main table is linked to the subdirectory table. Latter table orders all resources or di-
rectories from the main table by referencing back all subdirectories and resources for 
each directory. 

Regular files in the main table are also referenced by the subdirectory pointer. 
However, since the type of regular files differs from the directory type, the pointer is 
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interpreted as a reference to the storage table. Each entry of that table represents the 
content of a regular file and is preceded by its file size attribute. The storage table is 
stored on the external flash. Therefore only the first two tables are kept in RAM, 
minimizing the overall consumption. Directed and mediated resources are only refer-
enced in the main table along with their function pointers. As a positive effect, the 
system programmer can benefit from this organization since it enables an easy way to 
re-use common functions. 

 

Fig. 3. File Tables of the ParticleFS (function pointers are left out). 

4.2   Functionality of ParticleFS 

During the boot up of the hardware when the ParticleFS starts it mounts several re-
sources. It creates the /context/ directory for mediated resources, the /usr/ directory 
for file storage and the /dev/ directory for direct resources. The file system also 
mounts the known sensors in the /dev/ directory. Resources mounted at startup, in 
particular sensors in /dev/, are not expected to be umounted during the runtime of the 
file system. Each sensor driver has to provide a specific read() and write() function 
referenced in the file system. Additionally, there is a file library providing read() and 
write() functions for regular files and directories. Now, consider the following two 
representative scenarios:  

Access a direct resource (e.g. /dev/SAU – the audio sensor). Figure 4 illustrates the 
access of the audio sensor through the file system. In the first step a call of the open() 
operation is needed to retrieve the resource descriptor from the main table. The sys-
tem’s read() operation uses the descriptor to retrieve the function pointer for the re-
source’s specific read() function, here readMic(). The specific read() function is called 
and starts sampling the microphone using the MPU’s analog-digital-converter. The 
sampled values are then returned in the given buffer from the read operation. 
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Fig. 4. Reading a Sensor (Direct Resource). Fig. 5. Reading the Audio Volume (Medi-
ated Resource). 

Access a mediated resource (e.g. /context/audiovolume). In figure 5 the file sys-
tem’s read() operation will call the specific read() function of /context/audiovolume, 
here readVol() in order to compute the average volume for n samples from the micro-
phone. That read() function will invoke the system’s read() operation for /dev/SAU 
like in the previous scenario, but n times. The resource descriptor of /dev/SAU can be 
re-used minimizing the effort to find the entry in the main table when the audio sen-
sor is accessed again. Finally, the average volume for the period of samples will then 
be computed and returned to the file system’s call on /context/audiovolume. 

Accessing sensors does not necessarily mean only read accesses. All sensors have 
to provide a specific write() operation. Usually, it refers to an empty function. How-
ever, some sensors implement a non-empty one for configuration purposes. For in-
stance, write() functions of analog sensors may configure the bit resolution of the 
analog-digital converter when sampling. 

4.3   Discussion of ParticleFS 

In our current implementation the main table can hold up to 50 resource entries where 
each one is 30 characters long at maximum. Additional for each resource is a type of 
one byte, function pointers for the specific read/write functions – each 2 bytes long – 
and the subdirectory pointer consisting of one byte identifying the position of the 
entry holding all subdirectories or resources in the parent directory. The subdirectory 
table can reference 15 subdirectories or other resources for each parent directory. 
However, there are only 10 parent directories possible. It is important to note that the 
focus of the implementation was not to create deep and complex file trees. We do not 
believe that this will be convenient on the systems we are targeting. We expect that 
the structure is rather flat with many resources distributed over a few directories. The 
storage table uses the external flash of 512KB to store files. The structure of this table 
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imposes a 50 byte segment alignment of all data. Files smaller than this size do not 
use the remainder. Larger files will allocate a multiple of 50 bytes segments. The 
design decision was made according to our expectation, that our system will handle 
large file for sensor logging, and small files for intermediate results or configuration 
data. Altogether, the file system consumes 1850 bytes of RAM for holding the tables 
and has access to the complete external memory. However, in future implementations 
parts of the main and subdirectory table will be swap out to the external memory. The 
implementation of the minimal set of operations from section 3.3 required 2106 byte 
program Flash memory. 

Currently, the ParticleFS implementation does not support an event mechanism 
and has no notion of interrupts. All file system operations run synchronously, i.e. the 
call returns after the completion of the operation. When accessing a resource through 
the file system the resolution process to determine the specific read() or write() func-
tion slows down the execution process. However, once the file descriptor is obtained, 
it can be reused for further uses. So, each access to a resource is then only preceded 
by a table lookup for the specific read() or write() function and call of this function. 
On the Particles’ 18F6720 MPU the delay for the lookup and the additional call is 
below 5 microseconds. The delay of the analog-digital-converter to sample a new 
sensor value is about 30 microseconds. I2C sensors are even slower. So, the resolu-
tion of the access through the file system had no noticeable effect on sensor sampling.  

Both read() and write() operations are character oriented. We found, that exchang-
ing arrays of byte is the most generic way to deal with the diversity of resources. 
Mediated resources can transform those raw data to structured ones and can further 
work with them. In order to ensure the semantic meaning the types were introduced 
to check for compatibility. Nevertheless, the view on the resources is local. Up to 
now, we have not implemented a mechanism which can combine file systems of 
multiple device. 

The current implementation for regular file storage does not focus on frequent up-
dates of files. Such updates will trash the storage table. As a consequence, a continu-
ous writing of a large file for sensor logging might fail, if there is an insufficient 
number of consecutive 50 bytes segments left. Compacting files regularly may be a 
solution. However, read() and write() calls on regular files are resolved to specific 
functions in the file library which is not part of the file system. This flexibility makes 
it easy to transparently implement a new concept for storing data files. This shows 
how the file system fulfills the principles from the motivation by providing a uniform 
access to resources and supports the system programmer to follow a simple way. 

5   Application: Telnet for Smart-Its Particles 

Telnet is a console to remotely access all functionality of the file system ParticleFS 
and let users inspect all resources of an embedded sensor node interactively. It en-
ables a user to actually login on the Particle and browse the file system, read sensors 
and activate actuators. 
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5.1   Components 

The telnet application is divided into a proxy and a telnet server. The proxy as shown 
in figure 6 runs on a personal computer connected to a UDP network. It is responsible 
for sending commands to the server running a specific. A bridge in the UDP network 
transports messages from the proxy to the RF network of the Smart-Its Particles and 
vice versa. The proxy awaits a connection from a regular telnet client. If connected, 
each string encapsulated in the telnet protocol from the client is extracted by the 
proxy’s command parser and given to the Particle communication module. The latter 
is sending this string to the telnet server encapsulated in the Particle protocol. 

Telnet Proxy

Command
Parser

Particle
Communication

Module

Bridge

UDP Network
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......

Wireless
Network
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Fig. 6. Telnet Proxy on Personal 
Computer. 

Fig. 7. Telnet Server on Particle demonstrating  
“less /usr/file1”. 

The telnet server is implemented on a Particle (figure 7). It places a command inter-
preter on top of the file system. The interpreter enables more complex operations for 
inspecting, copying, moving or deleting of regular files. A command parser reads 
strings from the communication interface using the file system’s /dev/comm resource. 
The strings are parsed and forwarded to the interpreter for invocation. All interpreter 
operations are mounted in the file system as mediated resources under /context/telnet/ 
and can be called as commands in the telnet console. 

5.2   Functionality of Particle Telnet 

Once a telnet client is connected to the proxy and finally to the telnet server on the 
Particle, commands can be remotely invoked on the Particle’s file system. We repre-
sentatively describe the invocation of the command “less /usr/file1” as it is shown in 
figure 7. The command displays the content of a file /usr/file1. We present further 
commands where the file system supports the telnet application. 

The command parser parses “less /usr/file1” and identifies the command, here 
“less” and the parameter, here “/usr/file1”. These information are given to the inter-
preter which invokes “/context/telnet/less” by calling the file system’s read() opera-



262      Christian Decker, Michael Beigl, and Albert Krohn 

tion on it. The file system resolves this call into the mediated resource “less” and 
invokes the specific implementation for read() on it. In the same way the “less” re-
source resolves the parameter “/usr/file1” into the “file1” resource. By invoking 
“file1” it accesses /dev/eMem and therefore resolves this direct resource into the 
read() function in the memory driver. Finally, this function accesses the file on the 
external flash memory. The file content is returned to next previous caller until it is 
written to /dev/comm by the command parser and then presented in the telnet console 
of the client.  

Browsing and File Operations. The interpreter provides commands like “dir”, 
“copy”, “delete”, “write” for listing directories, copy, deletion and writing of files. 
The commands allow to interactively inspect the file system and all available re-
sources on the embedded sensor node. Further, these commands support modifica-
tions of the file system, since one can create and delete own directories and files and 
store arbitrary data. 

Accessing Sensors. The “less /context/dev/SLI” command prints the current light 
sensor value on the console. However, the “less” command denies the access on the 
direct resource /dev/SLI, because those resources return raw data which may contain 
non-printable characters. The file system supports this behavior by providing re-
source type information. The “less” command decides accordingly, whether the ac-
cess to a resources is granted or not. Access to resources under /context/dev/ is 
granted since they return sensor values in a printable format. 

Combining Resources. The file system supports combination of resources. Com-
mands utilize resource type information in order to adapt their behavior accordingly. 
The command “write /dev/comm /dev/SLI” reads a light sensor value and sends it via 
the communication interface. The “write” command can also be applied for strings in 
combination with regular files, e.g. “write /usr/file ‘hello world!’ ”. Hereby, the type 
information causes the write command to store the given string in /usr/file. 

New Commands. The set of commands which the interpreter can invoke may not be 
sufficient for an embedded sensor node. The file system contributes to the integration 
of new commands of the interpreter by mounting them as mediated resources in the 
file system. As a consequence, all telnet functionality is disclosed by adequate medi-
ated resources in the file system. This enables a system programmer to easily add and 
interactively test new functions. 

6   Related Work 

UNIX operating systems and various derivates like Linux incorporate peripheral 
devices such as keyboard, mouse, sound card as special files in their file system. 
Plan9[14] implements this idea consequently. All resources are accessed in a file-
based manner with file-based operations. Our work was mainly inspired from this 
idea, but differs in the way the application sees the resources. In contrast to Plan9, 
there are no client specific local name spaces imposed on the file system. As a result 
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file servers managing theses views are not needed. This forms a very lightweight 
access model especially appropriate for resource limited sensor nodes. 

In Ubicomp the idea of file systems is also already established for system-wide 
data access and sharing method as well as for data storage on sensor nodes. Dy-
namo[11], a file system for smart room applications residing in Stanford’s iRoom, is 
targeted on office collaboration scenarios. Hereby, file-oriented data is consistently 
replicated across various devices from personal computer infrastructure down to 
personal devices, such as PDAs. Further, users can choose situations like meetings, 
coffee breaks and others, in which they want to share certain portions of their file 
system. The context-aware file system (CFS) [8] integrates this principle conse-
quently. The user’s personal data are organized in directories using his name while 
context driven data is organized based on contextual information. Contexts may be 
physical presence, location or data format requirements of the user’s personal device. 
According to the current context, the file system’s awareness limits the visibility of 
data stored in this file system. These examples show, that file systems are thought of 
middleware solutions for data management in mobile scenarios. The Dynamo and 
CFS rely on strong infrastructure support provided by personal computers. The 
smallest entity using those middleware services is a PDA-like device. In contrast, our 
approach with ParticleFS is self-contained and implements the file system on individ-
ual sensor nodes, small enough to be integrated in everyday objects. Berkeley Motes 
and the BTNodes[4] from the ETH implement sensor node file systems. Motes follow 
with MatchBox[7] a very straight approach for storing data on an external Flash 
memory component. The file system supports only sequential reads and appending 
writes. This distributes write accesses over the entire Flash memory space and con-
tributes to the memory’s life time especially under high write access loads. The Mi-
cro-ROM implementation of the BTNodes provides a simple program space file sys-
tem. Hereby, data files are linked together as part of the application program. This 
results in a read-only data structure only suitable for the application it was linked 
with. In contrast to those examples we extend the file system concept by integrating 
other resources like sensors, memory and communication into the file system. Apart 
from data storage, the file systems forms a uniform access model and supports system 
developers for embedded sensor nodes. 

7   Conclusion and Future Work 

By bringing the file system approach down to the sensor node we continue existing 
system support concepts in Ubicomp. System programmers are provided with a com-
pact, easy-to-understand interface, with which they are very familiar. The uniform 
interface and the consistent integration of all resources in one name space support 
system programmers to follow the simplest way during development. The capability 
of extension by just adding another file/resource let them easily add new functions on 
the sensor node while maintaining the uniform interface. Having the file abstraction 
directly on the sensor node enables also a homogeneous integration of small sensor 
systems into previous work in system support for Ubicomp in particular for middle-
ware solutions. 
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In future work we will integrate an event mechanism, which is able to present and 
handle hardware interrupts and self defined events in the file system. The research on 
the minimal set of file system operation will proceed, as more experience will be 
gained. Future file systems for sensor nodes will also incorporate remote resources in 
the local file system. Finally, with the telnet application we have implemented an 
evaluation environment for rapidly testing these new file system capabilities. 
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Schöler, Thorsten 139
Schölzel, Mario 178
Schwan, Karsten 18, 207
Schwarzfischer, Thomas 50

Trancoso, Pedro 193
Trumler, Wolfgang 79

Uhrig, Sascha 1
Ungerer, Theo 1, 79

Zhang, Tao 207


	Frontmatter
	Adaptation, Power Consumption and Scheduling
	Energy Management for Embedded Multithreaded Processors with Integrated EDF Scheduling
	Reducing System Level Power Consumption for Mobile and Embedded Platforms
	Implementing Control Algorithms Within a Multithreaded Java Microcontroller
	Adaptivity for Quality and Timeliness Flexible Real-Time Systems

	Adaptation and Agents
	Apricot Agent Platform for User-Friendly Mobile Service Development
	Support of Reflective Mobile Agents in a Smart Office Environment
	Learning Action Sequences Through Imitation in Behavior Based Architectures

	Adaptation and Services
	Self-healing Execution of Business Processes Based on a Peer-to-Peer Service Architecture
	Runtime Adaptation of Applications Through Dynamic Recomposition of Components
	An Observer/Controller Architecture for Adaptive Reconfigurable Stacks

	Application Adaptable Systems
	The Organic Features of the AMIDAR Class of Processors
	Reusable Design of Inter-chip Communication Interfaces for Next Generation of Adaptive Computing Systems
	DESCOMP: A New Design Space Exploration Approach
	Design Space Navigation for Neighboring Power-Performance Efficient Microprocessor Configurations
	An Efficient Frequency Scaling Approach for Energy-Aware Embedded Real-Time Systems

	Pervasive Computing and Communication
	Towards Autonomic Networking Using Overlay Routing Techniques
	Context-Based Storage Management for Wearable and Portable Devices
	A File System for System Programming in Ubiquitous Computing

	Backmatter


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




